1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
// Copyright 2022 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "SparseFB.h"
#include "OSPConfig.h"
#include "common/DeviceRTImpl.h"
#include "fb/ImageOp.h"
#include "render/util.h"
#include "rkcommon/common.h"
#include "rkcommon/tasking/parallel_for.h"
#include "rkcommon/tracing/Tracing.h"
#include "rkcommon/utility/ArrayView.h"
#ifndef OSPRAY_TARGET_SYCL
#include "fb/SparseFB_ispc.h"
#endif
#include <cstdlib>
#include <numeric>
namespace ospray {
// A global function so we can call it from the tile initialization SYCL kernel
box2i getTileRegion(uint32_t tileID, const vec2i fbSize, const vec2i totalTiles)
{
const vec2i tilePos(tileID % totalTiles.x, tileID / totalTiles.x);
return box2i(
tilePos * TILE_SIZE, min(tilePos * TILE_SIZE + TILE_SIZE, fbSize));
}
SparseFrameBuffer::SparseFrameBuffer(api::ISPCDevice &device,
const vec2i &_size,
ColorBufferFormat _colorBufferFormat,
const uint32 channels,
const std::vector<uint32_t> &_tileIDs)
: AddStructShared(device.getDRTDevice(),
device,
_size,
_colorBufferFormat,
channels,
FFO_FB_SPARSE),
device(device),
totalTiles(divRoundUp(size, vec2i(TILE_SIZE)))
{
if (size.x <= 0 || size.y <= 0) {
throw std::runtime_error(
"local framebuffer has invalid size. Dimensions must be greater than "
"0");
}
setTiles(_tileIDs);
}
SparseFrameBuffer::SparseFrameBuffer(api::ISPCDevice &device,
const vec2i &_size,
ColorBufferFormat _colorBufferFormat,
const uint32 channels)
: AddStructShared(device.getDRTDevice(),
device,
_size,
_colorBufferFormat,
channels,
FFO_FB_SPARSE),
device(device),
totalTiles(divRoundUp(size, vec2i(TILE_SIZE)))
{
if (size.x <= 0 || size.y <= 0) {
throw std::runtime_error(
"local framebuffer has invalid size. Dimensions must be greater than "
"0");
}
}
vec2i SparseFrameBuffer::getNumRenderTasks() const
{
return numRenderTasks;
}
uint32_t SparseFrameBuffer::getTotalRenderTasks() const
{
return numRenderTasks.product();
}
utility::ArrayView<uint32_t> SparseFrameBuffer::getRenderTaskIDs(
const float errorThreshold, const uint32_t)
{
if (!renderTaskIDs) // XXX || accumulationFinished() as in local rendering,
// but this leads to a corrupted FB for MPI
return utility::ArrayView<uint32_t>();
if (errorThreshold > 0.0f && hasVarianceBuffer) {
RKCOMMON_IF_TRACING_ENABLED(
rkcommon::tracing::beginEvent("buildActiveTaskIDs", "SparseFb"));
auto last = std::copy_if(renderTaskIDs->begin(),
renderTaskIDs->end(),
activeTaskIDs->begin(),
[=](uint32_t i) { return taskError(i) > errorThreshold; });
activeTaskIDs->copyToDevice();
const size_t numActive = last - activeTaskIDs->begin();
RKCOMMON_IF_TRACING_ENABLED(rkcommon::tracing::endEvent());
return utility::ArrayView<uint32_t>(activeTaskIDs->devicePtr(), numActive);
} else {
RKCOMMON_IF_TRACING_ENABLED(
rkcommon::tracing::setMarker("returnAllTaskIDs", "SparseFB"));
return utility::ArrayView<uint32_t>(
renderTaskIDs->devicePtr(), renderTaskIDs->size());
}
}
std::string SparseFrameBuffer::toString() const
{
return "ospray::SparseFrameBuffer";
}
float SparseFrameBuffer::taskError(const uint32_t taskID) const
{
// If this SparseFB doesn't have any tiles return 0. This should not
// typically be called in this case anyways
if (!tiles) {
return 0.f;
}
if (!taskErrorBuffer) {
throw std::runtime_error(
"SparseFrameBuffer::taskError: trying to get task error on FB without variance/error buffers");
}
// TODO: Should sync taskError back in endFrame
return (*taskErrorBuffer)[taskID];
}
void SparseFrameBuffer::setTaskError(const uint32_t taskID, const float error)
{
// If this SparseFB doesn't have any tiles then do nothing. This should not
// typically be called in this case anyways
if (!tiles) {
return;
}
if (!taskErrorBuffer) {
throw std::runtime_error(
"SparseFrameBuffer::setTaskError: trying to set task error on FB without variance/error buffers");
}
// TODO: dirty tracking for task error, sync in begin frame
(*taskErrorBuffer)[taskID] = error;
}
void SparseFrameBuffer::beginFrame()
{
FrameBuffer::beginFrame();
if (tiles) {
#ifndef OSPRAY_TARGET_SYCL
for (auto &tile : *tiles) {
tile.accumID = getFrameID();
}
#else
const size_t numTasks = tiles->size();
auto *fbSh = getSh();
const int32 frameID = getFrameID();
sycl::queue *queue =
static_cast<sycl::queue *>(device.getDRTDevice().getSyclQueuePtr());
queue
->submit([&](sycl::handler &cgh) {
const sycl::nd_range<1> dispatchRange =
device.computeDispatchRange(numTasks, 16);
cgh.parallel_for(dispatchRange, [=](sycl::nd_item<1> taskIndex) {
if (taskIndex.get_global_id(0) < numTasks) {
fbSh->tiles[taskIndex.get_global_id(0)].accumID = frameID;
}
});
})
.wait_and_throw();
#endif
}
tilesDirty = true;
}
const void *SparseFrameBuffer::mapBuffer(OSPFrameBufferChannel)
{
return nullptr;
}
void SparseFrameBuffer::unmap(const void *) {}
void SparseFrameBuffer::clear()
{
FrameBuffer::clear();
// also clear the task error buffer if present
if (taskErrorBuffer) {
std::fill(taskErrorBuffer->begin(), taskErrorBuffer->end(), inf);
}
}
size_t SparseFrameBuffer::getNumTiles() const
{
return tiles ? tiles->size() : 0;
}
const utility::ArrayView<Tile> SparseFrameBuffer::getTiles()
{
if (!tiles) {
return utility::ArrayView<Tile>(nullptr, 0);
}
if (tilesDirty) {
RKCOMMON_IF_TRACING_ENABLED(
rkcommon::tracing::beginEvent("SparseFB::getTiles", "ospray"));
tilesDirty = false;
tiles->copyToHost().wait();
RKCOMMON_IF_TRACING_ENABLED(rkcommon::tracing::endEvent());
}
return utility::ArrayView<Tile>(tiles->hostPtr(), tiles->size());
}
const utility::ArrayView<Tile> SparseFrameBuffer::getTilesDevice() const
{
if (!tiles) {
return utility::ArrayView<Tile>(nullptr, 0);
}
return utility::ArrayView<Tile>(tiles->devicePtr(), tiles->size());
}
const utility::ArrayView<uint32_t> SparseFrameBuffer::getTileIDs()
{
if (tileIDs.empty()) {
return utility::ArrayView<uint32_t>(nullptr, 0);
}
return utility::ArrayView<uint32_t>(tileIDs.data(), tileIDs.size());
}
uint32_t SparseFrameBuffer::getTileIndexForTask(uint32_t taskID) const
{
// Find which tile this task falls into
// tileIdx -> index in the SparseFB's list of tiles
return taskID / getNumTasksPerTile();
}
void SparseFrameBuffer::setTiles(const std::vector<uint32_t> &_tileIDs)
{
RKCOMMON_IF_TRACING_ENABLED({
rkcommon::tracing::beginEvent("SparseFB::setTiles", "ospray");
rkcommon::tracing::setCounter("SparseFB::numTiles", _tileIDs.size());
});
// (Re-)configure the sparse framebuffer based on the tileIDs we're passed
tileIDs = _tileIDs;
numRenderTasks =
vec2i(tileIDs.size() * TILE_SIZE, TILE_SIZE) / getRenderTaskSize();
if (hasVarianceBuffer && !tileIDs.empty()) {
taskErrorBuffer = devicert::make_buffer_shared_unique<float>(
getISPCDevice().getDRTDevice(), numRenderTasks.long_product());
std::fill(taskErrorBuffer->begin(), taskErrorBuffer->end(), inf);
} else {
taskErrorBuffer = nullptr;
}
if (!tileIDs.empty()) {
tiles = devicert::make_buffer_device_shadowed_unique<Tile>(
getISPCDevice().getDRTDevice(), tileIDs.size());
const vec2f rcpSize = rcp(vec2f(size));
#ifndef OSPRAY_TARGET_SYCL
rkcommon::tasking::parallel_for(tiles->size(), [&](size_t i) {
Tile &t = (*tiles)[i];
t.fbSize = size;
t.rcp_fbSize = rcpSize;
t.region = getTileRegion(tileIDs[i]);
t.accumID = 0;
});
#else
// TODO: refactor and simplify this, we don't need so many copies of TileIDs
devicert::BufferDeviceShadowedImpl<uint32_t> deviceTileIDs(
device.getDRTDevice(), tileIDs);
deviceTileIDs.copyToDevice();
// In SYCL, populate the tiles on the device.
// TODO: Best to unify the codepaths more here and do the ISPC device
// tile population in ISPC so it also runs on the "device"
const uint32_t *deviceTileIDsPtr = deviceTileIDs.devicePtr();
const size_t numTasks = tiles->size();
const vec2i fbSize = size;
const vec2i fbTotalTiles = totalTiles;
Tile *tilesDevice = tiles->devicePtr();
sycl::queue *queue =
static_cast<sycl::queue *>(device.getDRTDevice().getSyclQueuePtr());
queue
->submit([&](sycl::handler &cgh) {
const sycl::nd_range<1> dispatchRange =
device.computeDispatchRange(numTasks, 16);
cgh.parallel_for(dispatchRange, [=](sycl::nd_item<1> taskIndex) {
if (taskIndex.get_global_id(0) < numTasks) {
const size_t tid = taskIndex.get_global_id(0);
tilesDevice[tid].fbSize = fbSize;
tilesDevice[tid].rcp_fbSize = rcpSize;
tilesDevice[tid].region = ospray::getTileRegion(
deviceTileIDsPtr[tid], fbSize, fbTotalTiles);
tilesDevice[tid].accumID = 0;
}
});
})
.wait_and_throw();
#endif
tilesDirty = true;
} else {
tiles = nullptr;
}
const size_t numPixels = tiles ? tileIDs.size() * TILE_SIZE * TILE_SIZE : 0;
if (hasVarianceBuffer && !tileIDs.empty()) {
varianceBuffer = devicert::make_buffer_device_unique<vec4f>(
getISPCDevice().getDRTDevice(), numPixels);
} else {
varianceBuffer = nullptr;
}
// TODO: Should find a better way for allowing sparse task id sets
// here we have this array b/c the tasks will be filtered down based on
// variance termination
if (!tileIDs.empty()) {
renderTaskIDs = devicert::make_buffer_device_shadowed_unique<uint32_t>(
getISPCDevice().getDRTDevice(), getTotalRenderTasks());
std::iota(renderTaskIDs->begin(), renderTaskIDs->end(), 0);
} else {
renderTaskIDs = nullptr;
}
if (hasVarianceBuffer && !tileIDs.empty()) {
activeTaskIDs = devicert::make_buffer_device_shadowed_unique<uint32_t>(
getISPCDevice().getDRTDevice(), getTotalRenderTasks());
} else {
activeTaskIDs = nullptr;
}
const uint32_t nTasksPerTile = getNumTasksPerTile();
// Sort each tile's tasks in Z order
// TODO: is this worth doing in the dynamicLB case? We make
// a new sparseFb for each tile set we receive, it seems like
// this won't be worth it.
if (tiles) {
#ifndef OSPRAY_TARGET_SYCL
// We use a 1x1 task size in SYCL and this sorting may not pay off for the
// cost it adds
rkcommon::tasking::parallel_for(tiles->size(), [&](const size_t i) {
std::sort(renderTaskIDs->begin() + i * nTasksPerTile,
renderTaskIDs->begin() + (i + 1) * nTasksPerTile,
[&](const uint32_t &a, const uint32_t &b) {
const vec2i p_a = getTaskPosInTile(a);
const vec2i p_b = getTaskPosInTile(b);
return interleaveZOrder(p_a.x, p_a.y)
< interleaveZOrder(p_b.x, p_b.y);
});
});
#endif
// Upload the task IDs to the device
renderTaskIDs->copyToDevice();
}
#ifndef OSPRAY_TARGET_SYCL
getSh()->super.accumulateSample =
reinterpret_cast<ispc::FrameBuffer_accumulateSampleFct>(
ispc::SparseFrameBuffer_accumulateSample_addr());
getSh()->super.getRenderTaskDesc =
reinterpret_cast<ispc::FrameBuffer_getRenderTaskDescFct>(
ispc::SparseFrameBuffer_getRenderTaskDesc_addr());
getSh()->super.completeTask =
reinterpret_cast<ispc::FrameBuffer_completeTaskFct>(
ispc::SparseFrameBuffer_completeTask_addr());
#endif
getSh()->numRenderTasks = numRenderTasks;
getSh()->totalTiles = totalTiles;
getSh()->tiles = tiles ? tiles->devicePtr() : nullptr;
getSh()->numTiles = tiles ? tiles->size() : 0;
getSh()->varianceBuffer =
varianceBuffer ? varianceBuffer->devicePtr() : nullptr;
getSh()->taskRegionError =
taskErrorBuffer ? taskErrorBuffer->data() : nullptr;
RKCOMMON_IF_TRACING_ENABLED(rkcommon::tracing::endEvent());
}
box2i SparseFrameBuffer::getTileRegion(uint32_t tileID) const
{
return ospray::getTileRegion(tileID, size, totalTiles);
}
vec2i SparseFrameBuffer::getTaskPosInTile(const uint32_t taskID) const
{
// Find where this task is supposed to render within this tile
const vec2i tasksPerTile = vec2i(TILE_SIZE) / getRenderTaskSize();
const uint32 taskTileID = taskID % (tasksPerTile.x * tasksPerTile.y);
vec2i taskStart(taskTileID % tasksPerTile.x, taskTileID / tasksPerTile.x);
return taskStart * getRenderTaskSize();
}
uint32_t SparseFrameBuffer::getNumTasksPerTile() const
{
const vec2i tileDims(TILE_SIZE);
const vec2i tasksPerTile = tileDims / getRenderTaskSize();
return tasksPerTile.long_product();
}
} // namespace ospray
|