1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
// Copyright 2009 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "IntensityDistribution.ih"
#include "common/Instance.ih"
#include "math/sampling.ih"
// c++ shared
#include "SpotLightShared.h"
OSPRAY_BEGIN_ISPC_NAMESPACE
// Implementation
//////////////////////////////////////////////////////////////////////////////
inline void Transform(const uniform SpotLightDynamic &pre,
const uniform affine3f &xfm,
uniform SpotLightDynamic &dyn)
{
dyn.position = xfmPoint(xfm, pre.position);
dyn.direction = normalize(xfmVector(xfm, pre.direction));
dyn.c90 = normalize(cross(xfmVector(xfm, pre.c0), dyn.direction));
dyn.c0 = cross(dyn.direction, dyn.c90);
}
export void SpotLight_Transform(
const void *uniform self, const void *uniform xfm, void *uniform dyn)
{
Transform(*((const SpotLightDynamic *uniform)self),
*((affine3f * uniform) xfm),
*((SpotLightDynamic * uniform) dyn));
}
inline float AngularAttenuation(const SpotLight *uniform self, float cosAngle)
{
return clamp((cosAngle - self->cosAngleMax) * self->cosAngleScale);
}
inline Light_SampleRes Sample(const SpotLight *uniform self,
const uniform SpotLightDynamic &dyn,
const DifferentialGeometry &dg,
const vec2f &s)
{
Light_SampleRes res;
// extant light vector from the hit point
res.dir = dyn.position - dg.P;
if (self->radius > 0.0f) {
uniform linear3f l2w;
l2w.vx = dyn.c0;
l2w.vy = dyn.c90;
l2w.vz = dyn.direction;
res.dir =
l2w * uniformSampleRing(self->radius, self->innerRadius, s) + res.dir;
}
const float dist2 = dot(res.dir, res.dir);
const float invdist = rsqrt(dist2);
// normalized light vector
res.dir = res.dir * invdist;
res.dist = dist2 * invdist;
// cosine of the negated light direction and light vector.
const float cosAngle = -dot(dyn.direction, res.dir);
float weight = AngularAttenuation(self, cosAngle);
if (self->intensityDistribution.lid)
weight *= IntensityDistribution_eval(
&self->intensityDistribution, dyn.c0, dyn.c90, cosAngle, res.dir);
if (self->radius > 0.0f) {
// convert area PDF to solid angle PDF
res.pdf = self->areaPdf * (dist2 / abs(cosAngle));
if (self->intensityDistribution.lid) {
// when an light distribution function is used we want to
// remove the cosine term. To avoid numerical issues
// at cosineAngle = 0 we use the fact that the division
// of radiance with the cosine cancels out.
weight /= self->areaPdf * dist2;
} else {
weight /= res.pdf;
}
res.weight = self->radiance * weight;
} else {
res.pdf = inf; // we always take this sample
if (!self->intensityDistribution.lid) {
// if the spotlight does not use a measured LDF we
// simulate Lambertian behavior by multiplication with cosineAngle
weight *= abs(cosAngle);
}
// convert from intensity to radiance by attenuating by distance^2;
// attenuate by angle
res.weight = self->intensity * (sqr(invdist) * weight);
}
return res;
}
SYCL_EXTERNAL Light_SampleRes SpotLight_sample(const Light *uniform super,
const DifferentialGeometry &dg,
const vec2f &s,
const float,
const uniform FeatureFlagsHandler &)
{
const SpotLight *uniform self = (SpotLight * uniform) super;
assert(self);
return Sample(self, self->pre, dg, s);
}
SYCL_EXTERNAL Light_SampleRes SpotLight_sample_instanced(
const Light *uniform super,
const DifferentialGeometry &dg,
const vec2f &s,
const float time,
const uniform FeatureFlagsHandler &)
{
const SpotLight *uniform self = (SpotLight * uniform) super;
assert(self);
const Instance *uniform instance = self->super.instance;
assert(instance);
Light_SampleRes res;
foreach_unique (utime in time) {
const uniform affine3f xfm = Instance_getTransform(instance, utime);
uniform SpotLightDynamic dyn;
Transform(self->pre, xfm, dyn);
res = Sample(self, dyn, dg, s);
}
return res;
}
inline Light_EvalRes Eval(const SpotLight *uniform self,
const uniform SpotLightDynamic &dyn,
const DifferentialGeometry &dg,
const vec3f &dir,
const float minDist,
const float maxDist)
{
Light_EvalRes res;
res.radiance = make_vec3f(0.f);
if (self->radius > 0.f) {
// intersect ring
const float cosAngle = -dot(dyn.direction, dir);
if (cosAngle > self->cosAngleMax) { // inside illuminated cone?
const vec3f vp = dg.P - dyn.position;
const float t = dot(vp, dyn.direction) * rcp(cosAngle);
if (t > minDist & t <= maxDist) {
const vec3f vd = vp + t * dir;
const float d2 = dot(vd, vd);
// inside ring?
if (d2 < sqr(self->radius) && d2 > sqr(self->innerRadius)) {
float attenuation = AngularAttenuation(self, cosAngle);
if (self->intensityDistribution.lid) {
attenuation *= IntensityDistribution_eval(
&self->intensityDistribution, dyn.c0, dyn.c90, cosAngle, dir);
// convert from intensity to radiance by canceling the the cosine
// term introduced by the Lambertian area light
attenuation /= abs(cosAngle);
}
// calculate the attenuated emitted radiance
res.radiance = self->radiance * attenuation;
// convert area PDF to solid angle PDF
res.pdf = self->areaPdf * (sqr(t) / abs(cosAngle));
}
}
}
}
return res;
}
SYCL_EXTERNAL Light_EvalRes SpotLight_eval(const Light *uniform super,
const DifferentialGeometry &dg,
const vec3f &dir,
const float minDist,
const float maxDist,
const float)
{
const SpotLight *uniform self = (SpotLight * uniform) super;
assert(self);
return Eval(self, self->pre, dg, dir, minDist, maxDist);
}
SYCL_EXTERNAL Light_EvalRes SpotLight_eval_instanced(const Light *uniform super,
const DifferentialGeometry &dg,
const vec3f &dir,
const float minDist,
const float maxDist,
const float time)
{
const SpotLight *uniform self = (SpotLight * uniform) super;
assert(self);
const Instance *uniform instance = self->super.instance;
assert(instance);
Light_EvalRes res;
foreach_unique (utime in time) {
const uniform affine3f xfm = Instance_getTransform(instance, utime);
uniform SpotLightDynamic dyn;
Transform(self->pre, xfm, dyn);
res = Eval(self, dyn, dg, dir, minDist, maxDist);
}
return res;
}
// Exports (called from C++)
//////////////////////////////////////////////////////////////////////////////
export void *uniform SpotLight_sample_addr()
{
return (void *uniform)SpotLight_sample;
}
#ifndef OSPRAY_TARGET_SYCL
export void *uniform SpotLight_sample_instanced_addr()
{
return (void *uniform)SpotLight_sample_instanced;
}
#endif
export void *uniform SpotLight_eval_addr()
{
return (void *uniform)SpotLight_eval;
}
#ifndef OSPRAY_TARGET_SYCL
export void *uniform SpotLight_eval_instanced_addr()
{
return (void *uniform)SpotLight_eval_instanced;
}
#endif
OSPRAY_END_ISPC_NAMESPACE
|