File: SpotLight.ispc

package info (click to toggle)
ospray 3.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 10,040 kB
  • sloc: cpp: 80,569; ansic: 951; sh: 805; makefile: 171; python: 69
file content (234 lines) | stat: -rw-r--r-- 7,046 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Copyright 2009 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "IntensityDistribution.ih"
#include "common/Instance.ih"
#include "math/sampling.ih"
// c++ shared
#include "SpotLightShared.h"

OSPRAY_BEGIN_ISPC_NAMESPACE

// Implementation
//////////////////////////////////////////////////////////////////////////////
inline void Transform(const uniform SpotLightDynamic &pre,
    const uniform affine3f &xfm,
    uniform SpotLightDynamic &dyn)
{
  dyn.position = xfmPoint(xfm, pre.position);
  dyn.direction = normalize(xfmVector(xfm, pre.direction));
  dyn.c90 = normalize(cross(xfmVector(xfm, pre.c0), dyn.direction));
  dyn.c0 = cross(dyn.direction, dyn.c90);
}

export void SpotLight_Transform(
    const void *uniform self, const void *uniform xfm, void *uniform dyn)
{
  Transform(*((const SpotLightDynamic *uniform)self),
      *((affine3f * uniform) xfm),
      *((SpotLightDynamic * uniform) dyn));
}

inline float AngularAttenuation(const SpotLight *uniform self, float cosAngle)
{
  return clamp((cosAngle - self->cosAngleMax) * self->cosAngleScale);
}

inline Light_SampleRes Sample(const SpotLight *uniform self,
    const uniform SpotLightDynamic &dyn,
    const DifferentialGeometry &dg,
    const vec2f &s)
{
  Light_SampleRes res;

  // extant light vector from the hit point
  res.dir = dyn.position - dg.P;

  if (self->radius > 0.0f) {
    uniform linear3f l2w;
    l2w.vx = dyn.c0;
    l2w.vy = dyn.c90;
    l2w.vz = dyn.direction;
    res.dir =
        l2w * uniformSampleRing(self->radius, self->innerRadius, s) + res.dir;
  }

  const float dist2 = dot(res.dir, res.dir);
  const float invdist = rsqrt(dist2);

  // normalized light vector
  res.dir = res.dir * invdist;
  res.dist = dist2 * invdist;

  // cosine of the negated light direction and light vector.
  const float cosAngle = -dot(dyn.direction, res.dir);

  float weight = AngularAttenuation(self, cosAngle);
  if (self->intensityDistribution.lid)
    weight *= IntensityDistribution_eval(
        &self->intensityDistribution, dyn.c0, dyn.c90, cosAngle, res.dir);
  if (self->radius > 0.0f) {
    // convert area PDF to solid angle PDF
    res.pdf = self->areaPdf * (dist2 / abs(cosAngle));
    if (self->intensityDistribution.lid) {
      // when an light distribution function is used we want to
      // remove the cosine term. To avoid numerical issues
      // at cosineAngle = 0 we use the fact that the division
      // of radiance with the cosine cancels out.
      weight /= self->areaPdf * dist2;
    } else {
      weight /= res.pdf;
    }
    res.weight = self->radiance * weight;
  } else {
    res.pdf = inf; // we always take this sample
    if (!self->intensityDistribution.lid) {
      // if the spotlight does not use a measured LDF we
      // simulate Lambertian behavior by multiplication with cosineAngle
      weight *= abs(cosAngle);
    }
    // convert from intensity to radiance by attenuating by distance^2;
    // attenuate by angle
    res.weight = self->intensity * (sqr(invdist) * weight);
  }
  return res;
}

SYCL_EXTERNAL Light_SampleRes SpotLight_sample(const Light *uniform super,
    const DifferentialGeometry &dg,
    const vec2f &s,
    const float,
    const uniform FeatureFlagsHandler &)
{
  const SpotLight *uniform self = (SpotLight * uniform) super;
  assert(self);
  return Sample(self, self->pre, dg, s);
}

SYCL_EXTERNAL Light_SampleRes SpotLight_sample_instanced(
    const Light *uniform super,
    const DifferentialGeometry &dg,
    const vec2f &s,
    const float time,
    const uniform FeatureFlagsHandler &)
{
  const SpotLight *uniform self = (SpotLight * uniform) super;
  assert(self);

  const Instance *uniform instance = self->super.instance;
  assert(instance);

  Light_SampleRes res;
  foreach_unique (utime in time) {
    const uniform affine3f xfm = Instance_getTransform(instance, utime);
    uniform SpotLightDynamic dyn;
    Transform(self->pre, xfm, dyn);
    res = Sample(self, dyn, dg, s);
  }
  return res;
}

inline Light_EvalRes Eval(const SpotLight *uniform self,
    const uniform SpotLightDynamic &dyn,
    const DifferentialGeometry &dg,
    const vec3f &dir,
    const float minDist,
    const float maxDist)
{
  Light_EvalRes res;
  res.radiance = make_vec3f(0.f);

  if (self->radius > 0.f) {
    // intersect ring
    const float cosAngle = -dot(dyn.direction, dir);
    if (cosAngle > self->cosAngleMax) { // inside illuminated cone?
      const vec3f vp = dg.P - dyn.position;
      const float t = dot(vp, dyn.direction) * rcp(cosAngle);
      if (t > minDist & t <= maxDist) {
        const vec3f vd = vp + t * dir;
        const float d2 = dot(vd, vd);
        // inside ring?
        if (d2 < sqr(self->radius) && d2 > sqr(self->innerRadius)) {
          float attenuation = AngularAttenuation(self, cosAngle);
          if (self->intensityDistribution.lid) {
            attenuation *= IntensityDistribution_eval(
                &self->intensityDistribution, dyn.c0, dyn.c90, cosAngle, dir);
            // convert from intensity to radiance by canceling the the cosine
            // term introduced by the Lambertian area light
            attenuation /= abs(cosAngle);
          }

          // calculate the attenuated emitted radiance
          res.radiance = self->radiance * attenuation;

          // convert area PDF to solid angle PDF
          res.pdf = self->areaPdf * (sqr(t) / abs(cosAngle));
        }
      }
    }
  }
  return res;
}

SYCL_EXTERNAL Light_EvalRes SpotLight_eval(const Light *uniform super,
    const DifferentialGeometry &dg,
    const vec3f &dir,
    const float minDist,
    const float maxDist,
    const float)
{
  const SpotLight *uniform self = (SpotLight * uniform) super;
  assert(self);
  return Eval(self, self->pre, dg, dir, minDist, maxDist);
}

SYCL_EXTERNAL Light_EvalRes SpotLight_eval_instanced(const Light *uniform super,
    const DifferentialGeometry &dg,
    const vec3f &dir,
    const float minDist,
    const float maxDist,
    const float time)
{
  const SpotLight *uniform self = (SpotLight * uniform) super;
  assert(self);

  const Instance *uniform instance = self->super.instance;
  assert(instance);

  Light_EvalRes res;
  foreach_unique (utime in time) {
    const uniform affine3f xfm = Instance_getTransform(instance, utime);
    uniform SpotLightDynamic dyn;
    Transform(self->pre, xfm, dyn);
    res = Eval(self, dyn, dg, dir, minDist, maxDist);
  }
  return res;
}

// Exports (called from C++)
//////////////////////////////////////////////////////////////////////////////

export void *uniform SpotLight_sample_addr()
{
  return (void *uniform)SpotLight_sample;
}

#ifndef OSPRAY_TARGET_SYCL
export void *uniform SpotLight_sample_instanced_addr()
{
  return (void *uniform)SpotLight_sample_instanced;
}
#endif

export void *uniform SpotLight_eval_addr()
{
  return (void *uniform)SpotLight_eval;
}

#ifndef OSPRAY_TARGET_SYCL
export void *uniform SpotLight_eval_instanced_addr()
{
  return (void *uniform)SpotLight_eval_instanced;
}
#endif
OSPRAY_END_ISPC_NAMESPACE