1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
// Copyright 2009 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
/* This is a small example tutorial how to use OSPRay and the
* MPIDistributedDevice in a data-parallel application.
* Each rank must specify the same render parameters, however the data
* to render on each rank can differ for distributed rendering. In this
* tutorial each rank renders a unique quad, which is colored by the rank.
*
* On Linux build it in the build_directory with:
* mpicc -std=c99 ../modules/mpi/tutorials/ospMPIDistributedTutorial.c \
* -I ../ospray/include \
* -L . -lospray -Wl,-rpath,. \
* -o ospMPIDistributedTutorial
*
* Then run it with MPI on some number of processes
* mpirun -n <N> ./ospMPIDistributedTutorial
*
* The output image should show a sequence of quads, from dark to light blue
*/
#include <errno.h>
#include <mpi.h>
#include <stdint.h>
#include <stdio.h>
#ifdef _WIN32
#include <malloc.h>
#else
#include <alloca.h>
#endif
#include <ospray/ospray.h>
#include <ospray/ospray_util.h>
// helper function to write the rendered image as PPM file
void writePPM(
const char *fileName, int size_x, int size_y, const uint32_t *pixel)
{
FILE *file = fopen(fileName, "wb");
if (!file) {
fprintf(stderr, "fopen('%s', 'wb') failed: %d", fileName, errno);
return;
}
fprintf(file, "P6\n%i %i\n255\n", size_x, size_y);
unsigned char *out = (unsigned char *)alloca(3 * size_x);
for (int y = 0; y < size_y; y++) {
const unsigned char *in =
(const unsigned char *)&pixel[(size_y - 1 - y) * size_x];
for (int x = 0; x < size_x; x++) {
out[3 * x + 0] = in[4 * x + 0];
out[3 * x + 1] = in[4 * x + 1];
out[3 * x + 2] = in[4 * x + 2];
}
fwrite(out, 3 * size_x, sizeof(char), file);
}
fprintf(file, "\n");
fclose(file);
}
int main(int argc, char **argv)
{
int mpiThreadCapability = 0;
MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &mpiThreadCapability);
if (mpiThreadCapability != MPI_THREAD_MULTIPLE
&& mpiThreadCapability != MPI_THREAD_SERIALIZED) {
fprintf(stderr,
"OSPRay requires the MPI runtime to support thread "
"multiple or thread serialized.\n");
return 1;
}
int mpiRank = 0;
int mpiWorldSize = 0;
MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank);
MPI_Comm_size(MPI_COMM_WORLD, &mpiWorldSize);
// image size
int imgSizeX = 1024; // width
int imgSizeY = 768; // height
// camera
float cam_pos[] = {(mpiWorldSize + 1.f) / 2.f, 0.5f, -mpiWorldSize * 0.5f};
float cam_up[] = {0.f, 1.f, 0.f};
float cam_view[] = {0.0f, 0.f, 1.f};
// all ranks specify the same rendering parameters, with the exception of
// the data to be rendered, which is distributed among the ranks
// triangle mesh data
float vertex[] = {
mpiRank,
0.0f,
3.5f,
mpiRank,
1.0f,
3.0f,
1.0f * (mpiRank + 1.f),
0.0f,
3.0f,
1.0f * (mpiRank + 1.f),
1.0f,
2.5f,
};
float color[] = {0.0f,
0.0f,
(mpiRank + 1.f) / mpiWorldSize,
1.0f,
0.0f,
0.0f,
(mpiRank + 1.f) / mpiWorldSize,
1.0f,
0.0f,
0.0f,
(mpiRank + 1.f) / mpiWorldSize,
1.0f,
0.0f,
0.0f,
(mpiRank + 1.f) / mpiWorldSize,
1.0f};
int32_t index[] = {0, 1, 2, 1, 2, 3};
// load the MPI module, and select the MPI distributed device. Here we
// do not call ospInit, as we want to explicitly pick the distributed
// device. This can also be done by passing --osp:mpi-distributed when
// using ospInit, however if the user doesn't pass this argument your
// application will likely not behave as expected
ospLoadModule("mpi_distributed_cpu");
OSPDevice mpiDevice = ospNewDevice("mpiDistributed");
ospDeviceCommit(mpiDevice);
ospSetCurrentDevice(mpiDevice);
// create and setup camera
OSPCamera camera = ospNewCamera("perspective");
ospSetFloat(camera, "aspect", imgSizeX / (float)imgSizeY);
ospSetParam(camera, "position", OSP_VEC3F, cam_pos);
ospSetParam(camera, "direction", OSP_VEC3F, cam_view);
ospSetParam(camera, "up", OSP_VEC3F, cam_up);
ospCommit(camera); // commit each object to indicate modifications are done
// create and setup model and mesh
OSPGeometry mesh = ospNewGeometry("mesh");
OSPData data = ospNewSharedData1D(vertex, OSP_VEC3F, 4);
ospCommit(data);
ospSetObject(mesh, "vertex.position", data);
ospRelease(data); // we are done using this handle
data = ospNewSharedData1D(color, OSP_VEC4F, 4);
ospCommit(data);
ospSetObject(mesh, "vertex.color", data);
ospRelease(data); // we are done using this handle
data = ospNewSharedData1D(index, OSP_VEC3UI, 2);
ospCommit(data);
ospSetObject(mesh, "index", data);
ospRelease(data); // we are done using this handle
ospCommit(mesh);
// put the mesh into a model
OSPGeometricModel model = ospNewGeometricModel(mesh);
ospCommit(model);
ospRelease(mesh);
// put the model into a group (collection of models)
OSPGroup group = ospNewGroup();
OSPData geometricModels = ospNewSharedData1D(&model, OSP_GEOMETRIC_MODEL, 1);
ospSetObject(group, "geometry", geometricModels);
ospCommit(group);
ospRelease(model);
ospRelease(geometricModels);
// put the group into an instance (give the group a world transform)
OSPInstance instance = ospNewInstance(group);
ospCommit(instance);
ospRelease(group);
// put the instance in the world
OSPWorld world = ospNewWorld();
OSPData instances = ospNewSharedData1D(&instance, OSP_INSTANCE, 1);
ospSetObject(world, "instance", instances);
ospRelease(instance);
ospRelease(instances);
// In the distributed device we set a clipping region to clip to the data
// owned uniquely by this rank which it should be rendering
float regionBounds[] = {mpiRank, 0.f, 2.5f, 1.f * (mpiRank + 1.f), 1.f, 3.5f};
data = ospNewSharedData1D(regionBounds, OSP_BOX3F, 1);
ospCommit(data);
ospSetObject(world, "region", data);
ospRelease(data);
ospCommit(world);
// create the mpi_raycast renderer (required for distributed rendering)
OSPRenderer renderer = ospNewRenderer("mpiRaycast");
// create and setup light for Ambient Occlusion
// TODO: Who gets the lights now?
OSPLight light = ospNewLight("ambient");
ospCommit(light);
OSPData lights = ospNewSharedData1D(&light, OSP_LIGHT, 1);
ospCommit(lights);
// complete setup of renderer
ospSetFloat(renderer, "backgroundColor", 1.0f); // white, transparent
ospSetObject(renderer, "light", lights);
ospCommit(renderer);
// create and setup framebuffer
OSPFrameBuffer framebuffer = ospNewFrameBuffer(imgSizeX,
imgSizeY,
OSP_FB_SRGBA,
OSP_FB_COLOR | /*OSP_FB_DEPTH |*/ OSP_FB_ACCUM);
ospResetAccumulation(framebuffer);
// Try picking an object
OSPPickResult pickResult;
ospPick(&pickResult, framebuffer, renderer, camera, world, 0.5f, 0.5f);
if (pickResult.hasHit) {
printf(
"Rank %d: ospPick() center of screen --> [inst: %p, model: %p, prim: %u]\n",
mpiRank,
pickResult.instance,
pickResult.model,
pickResult.primID);
ospRelease(pickResult.instance);
ospRelease(pickResult.model);
} else {
printf("Rank %d: ospPick() center of screen did not hit\n", mpiRank);
}
// render one frame
ospRenderFrameBlocking(framebuffer, renderer, camera, world);
// on rank 0, access framebuffer and write its content as PPM file
if (mpiRank == 0) {
const uint32_t *fb =
(uint32_t *)ospMapFrameBuffer(framebuffer, OSP_FB_COLOR);
writePPM("firstFrame.ppm", imgSizeX, imgSizeY, fb);
ospUnmapFrameBuffer(fb, framebuffer);
}
// render 10 more frames, which are accumulated to result in a better
// converged image
for (int frames = 0; frames < 10; frames++)
ospRenderFrameBlocking(framebuffer, renderer, camera, world);
if (mpiRank == 0) {
const uint32_t *fb =
(uint32_t *)ospMapFrameBuffer(framebuffer, OSP_FB_COLOR);
writePPM("accumulatedFrame.ppm", imgSizeX, imgSizeY, fb);
ospUnmapFrameBuffer(fb, framebuffer);
}
// final cleanups
ospRelease(renderer);
ospRelease(camera);
ospRelease(lights);
ospRelease(light);
ospRelease(framebuffer);
ospRelease(world);
ospDeviceRelease(mpiDevice);
ospShutdown();
MPI_Finalize();
return 0;
}
|