File: ospMPIDistribTutorialAsync.c

package info (click to toggle)
ospray 3.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 10,040 kB
  • sloc: cpp: 80,569; ansic: 951; sh: 805; makefile: 171; python: 69
file content (257 lines) | stat: -rw-r--r-- 7,955 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
// Copyright 2009 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

/* This is a small example tutorial how to use OSPRay and the
 * MPIDistributedDevice in a data-parallel application.
 * Each rank must specify the same render parameters, however the data
 * to render on each rank can differ for distributed rendering. In this
 * tutorial each rank renders a unique quad, which is colored by the rank.
 *
 * On Linux build it in the build_directory with:
 *   mpicc -std=c99 ../modules/mpi/tutorials/ospMPIDistributedTutorialAsync.c \
 *       -I ../ospray/include \
 *       -L . -lospray -Wl,-rpath,. \
 *       -o ospMPIDistributedTutorialAsync
 *
 * Then run it with MPI on some number of processes
 *   mpirun -n <N> ./ospMPIDistributedTutorialAsync
 *
 * The output image should show a sequence of quads, from dark to light blue
 */

#include <errno.h>
#include <mpi.h>
#include <stdint.h>
#include <stdio.h>
#ifdef _WIN32
#include <malloc.h>
#else
#include <alloca.h>
#endif
#include <ospray/ospray.h>
#include <ospray/ospray_util.h>

// helper function to write the rendered image as PPM file
void writePPM(
    const char *fileName, int size_x, int size_y, const uint32_t *pixel)
{
  FILE *file = fopen(fileName, "wb");
  if (!file) {
    fprintf(stderr, "fopen('%s', 'wb') failed: %d", fileName, errno);
    return;
  }
  fprintf(file, "P6\n%i %i\n255\n", size_x, size_y);
  unsigned char *out = (unsigned char *)alloca(3 * size_x);
  for (int y = 0; y < size_y; y++) {
    const unsigned char *in =
        (const unsigned char *)&pixel[(size_y - 1 - y) * size_x];
    for (int x = 0; x < size_x; x++) {
      out[3 * x + 0] = in[4 * x + 0];
      out[3 * x + 1] = in[4 * x + 1];
      out[3 * x + 2] = in[4 * x + 2];
    }
    fwrite(out, 3 * size_x, sizeof(char), file);
  }
  fprintf(file, "\n");
  fclose(file);
}

int main(int argc, char **argv)
{
  int mpiThreadCapability = 0;
  MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &mpiThreadCapability);
  if (mpiThreadCapability != MPI_THREAD_MULTIPLE
      && mpiThreadCapability != MPI_THREAD_SERIALIZED) {
    fprintf(stderr,
        "OSPRay requires the MPI runtime to support thread "
        "multiple or thread serialized.\n");
    return 1;
  }

  int mpiRank = 0;
  int mpiWorldSize = 0;
  MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank);
  MPI_Comm_size(MPI_COMM_WORLD, &mpiWorldSize);

  // image size
  int imgSizeX = 1024; // width
  int imgSizeY = 768; // height

  // camera
  float cam_pos[] = {(mpiWorldSize + 1.f) / 2.f, 0.5f, -mpiWorldSize * 0.5f};
  float cam_up[] = {0.f, 1.f, 0.f};
  float cam_view[] = {0.0f, 0.f, 1.f};

  // all ranks specify the same rendering parameters, with the exception of
  // the data to be rendered, which is distributed among the ranks
  // triangle mesh data
  float vertex[] = {
      mpiRank,
      0.0f,
      3.5f,
      mpiRank,
      1.0f,
      3.0f,
      1.0f * (mpiRank + 1.f),
      0.0f,
      3.0f,
      1.0f * (mpiRank + 1.f),
      1.0f,
      2.5f,
  };
  float color[] = {0.0f,
      0.0f,
      (mpiRank + 1.f) / mpiWorldSize,
      1.0f,
      0.0f,
      0.0f,
      (mpiRank + 1.f) / mpiWorldSize,
      1.0f,
      0.0f,
      0.0f,
      (mpiRank + 1.f) / mpiWorldSize,
      1.0f,
      0.0f,
      0.0f,
      (mpiRank + 1.f) / mpiWorldSize,
      1.0f};
  int32_t index[] = {0, 1, 2, 1, 2, 3};

  // load the MPI module, and select the MPI distributed device. Here we
  // do not call ospInit, as we want to explicitly pick the distributed
  // device.
  ospLoadModule("mpi_distributed_cpu");

  OSPDevice mpiDevice = ospNewDevice("mpiDistributed");
  ospDeviceCommit(mpiDevice);
  ospSetCurrentDevice(mpiDevice);

  // create and setup camera
  OSPCamera camera = ospNewCamera("perspective");
  ospSetFloat(camera, "aspect", imgSizeX / (float)imgSizeY);
  ospSetParam(camera, "position", OSP_VEC3F, cam_pos);
  ospSetParam(camera, "direction", OSP_VEC3F, cam_view);
  ospSetParam(camera, "up", OSP_VEC3F, cam_up);
  ospCommit(camera); // commit each object to indicate modifications are done

  // create and setup model and mesh
  OSPGeometry mesh = ospNewGeometry("mesh");
  OSPData data = ospNewSharedData1D(vertex, OSP_VEC3F, 4);
  ospCommit(data);
  ospSetObject(mesh, "vertex.position", data);
  ospRelease(data); // we are done using this handle

  data = ospNewSharedData1D(color, OSP_VEC4F, 4);
  ospCommit(data);
  ospSetObject(mesh, "vertex.color", data);
  ospRelease(data); // we are done using this handle

  data = ospNewSharedData1D(index, OSP_VEC3UI, 2);
  ospCommit(data);
  ospSetObject(mesh, "index", data);
  ospRelease(data); // we are done using this handle

  ospCommit(mesh);

  // put the mesh into a model
  OSPGeometricModel model = ospNewGeometricModel(mesh);
  ospCommit(model);
  ospRelease(mesh);

  // put the model into a group (collection of models)
  OSPGroup group = ospNewGroup();
  OSPData geometricModels = ospNewSharedData1D(&model, OSP_GEOMETRIC_MODEL, 1);
  ospSetObject(group, "geometry", geometricModels);
  ospCommit(group);
  ospRelease(model);
  ospRelease(geometricModels);

  // put the group into an instance (give the group a world transform)
  OSPInstance instance = ospNewInstance(group);
  ospCommit(instance);
  ospRelease(group);

  // put the instance in the world
  OSPWorld world = ospNewWorld();
  OSPData instances = ospNewSharedData1D(&instance, OSP_INSTANCE, 1);
  ospSetObject(world, "instance", instances);
  ospRelease(instance);
  ospRelease(instances);

  // In the distributed device we set a clipping region to clip to the data
  // owned uniquely by this rank which it should be rendering
  float regionBounds[] = {mpiRank, 0.f, 2.5f, 1.f * (mpiRank + 1.f), 1.f, 3.5f};
  data = ospNewSharedData1D(regionBounds, OSP_BOX3F, 1);
  ospCommit(data);
  ospSetObject(world, "region", data);
  ospRelease(data);

  ospCommit(world);

  // create the mpi_raycast renderer (required for distributed rendering)
  OSPRenderer renderer = ospNewRenderer("mpiRaycast");

  // create and setup light for Ambient Occlusion
  // TODO: Who gets the lights now?
  OSPLight light = ospNewLight("ambient");
  ospCommit(light);
  OSPData lights = ospNewSharedData1D(&light, OSP_LIGHT, 1);
  ospCommit(lights);

  // complete setup of renderer
  ospSetFloat(renderer, "backgroundColor", 1.0f); // white, transparent
  ospSetObject(renderer, "light", lights);
  ospCommit(renderer);

  // create and setup framebuffer
  OSPFrameBuffer framebuffer = ospNewFrameBuffer(imgSizeX,
      imgSizeY,
      OSP_FB_SRGBA,
      OSP_FB_COLOR | /*OSP_FB_DEPTH |*/ OSP_FB_ACCUM);
  ospResetAccumulation(framebuffer);

  // render one frame
  OSPFuture result = ospRenderFrame(framebuffer, renderer, camera, world);
  int isFinished = ospIsReady(result, OSP_TASK_FINISHED);
  printf("status of 'result' is %i\n", isFinished);
  printf("waiting on frame to finish...\n");
  ospWait(result, OSP_FRAME_FINISHED);
  printf("...done!\n");
  printf("variance was %f\n", ospGetVariance(framebuffer));
  ospRelease(result);

  // on rank 0, access framebuffer and write its content as PPM file
  if (mpiRank == 0) {
    const uint32_t *fb =
        (uint32_t *)ospMapFrameBuffer(framebuffer, OSP_FB_COLOR);
    writePPM("firstFrame.ppm", imgSizeX, imgSizeY, fb);
    ospUnmapFrameBuffer(fb, framebuffer);
  }

  // render 10 more frames, which are accumulated to result in a better
  // converged image
  for (int frames = 0; frames < 10; frames++)
    ospRenderFrameBlocking(framebuffer, renderer, camera, world);

  if (mpiRank == 0) {
    const uint32_t *fb =
        (uint32_t *)ospMapFrameBuffer(framebuffer, OSP_FB_COLOR);
    writePPM("accumulatedFrame.ppm", imgSizeX, imgSizeY, fb);
    ospUnmapFrameBuffer(fb, framebuffer);
  }

  // final cleanups
  ospRelease(renderer);
  ospRelease(camera);
  ospRelease(lights);
  ospRelease(light);
  ospRelease(framebuffer);
  ospRelease(world);
  ospDeviceRelease(mpiDevice);

  ospShutdown();

  MPI_Finalize();

  return 0;
}