File: ospTutorialGLM.cpp

package info (click to toggle)
ospray 3.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,048 kB
  • sloc: cpp: 80,569; ansic: 951; sh: 805; makefile: 170; python: 69
file content (144 lines) | stat: -rw-r--r-- 4,442 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
// Copyright 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

/* This is a small example tutorial how to use OSPRay in an application using
   GLM instead of rkcommon for math types.
 */

#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#ifdef _WIN32
#define NOMINMAX
#include <malloc.h>
#else
#include <alloca.h>
#endif

#include <cstring>

#include <iostream>
#include <vector>

#include "ospray/ospray_cpp.h"
#define OSPRAY_GLM_DEFINITIONS
#include "ospray/ospray_cpp/ext/glm.h"
#include "rkcommon/utility/SaveImage.h"

int main(int argc, const char **argv)
{
  // image size
  glm::ivec2 imgSize;
  imgSize.x = 1024; // width
  imgSize.y = 768; // height

  // camera
  glm::vec3 cam_pos{0.f, 0.f, 0.f};
  glm::vec3 cam_up{0.f, 1.f, 0.f};
  glm::vec3 cam_view{0.1f, 0.f, 1.f};

  // triangle mesh data
  std::vector<glm::vec3> vertex = {glm::vec3(-1.0f, -1.0f, 3.0f),
      glm::vec3(-1.0f, 1.0f, 3.0f),
      glm::vec3(1.0f, -1.0f, 3.0f),
      glm::vec3(0.1f, 0.1f, 0.3f)};

  std::vector<glm::vec4> color = {glm::vec4(0.9f, 0.5f, 0.5f, 1.0f),
      glm::vec4(0.8f, 0.8f, 0.8f, 1.0f),
      glm::vec4(0.8f, 0.8f, 0.8f, 1.0f),
      glm::vec4(0.5f, 0.9f, 0.5f, 1.0f)};

  std::vector<glm::uvec3> index = {glm::uvec3(0, 1, 2), glm::uvec3(1, 2, 3)};

  // initialize OSPRay; OSPRay parses (and removes) its commandline parameters,
  // e.g. "--osp:debug"
  OSPError init_error = ospInit(&argc, argv);
  if (init_error != OSP_NO_ERROR)
    return init_error;

  // use scoped lifetimes of wrappers to release everything before ospShutdown()
  {
    // create and setup camera
    ospray::cpp::Camera camera("perspective");
    camera.setParam("aspect", imgSize.x / (float)imgSize.y);
    camera.setParam("position", cam_pos);
    camera.setParam("direction", cam_view);
    camera.setParam("up", cam_up);
    camera.commit(); // commit each object to indicate modifications are done

    // create and setup model and mesh
    ospray::cpp::Geometry mesh("mesh");
    mesh.setParam("vertex.position", ospray::cpp::CopiedData(vertex));
    mesh.setParam("vertex.color", ospray::cpp::CopiedData(color));
    mesh.setParam("index", ospray::cpp::CopiedData(index));
    mesh.commit();

    // put the mesh into a model
    ospray::cpp::GeometricModel model(mesh);
    model.commit();

    // put the model into a group (collection of models)
    ospray::cpp::Group group;
    group.setParam("geometry", ospray::cpp::CopiedData(model));
    group.commit();

    // put the group into an instance (give the group a world transform)
    ospray::cpp::Instance instance(group);
    instance.commit();

    // put the instance in the world
    ospray::cpp::World world;
    world.setParam("instance", ospray::cpp::CopiedData(instance));

    // create and setup light for Ambient Occlusion
    ospray::cpp::Light light("ambient");
    light.commit();

    world.setParam("light", ospray::cpp::CopiedData(light));
    world.commit();

    // create renderer, choose Scientific Visualization renderer
    ospray::cpp::Renderer renderer("scivis");

    // complete setup of renderer
    renderer.setParam("aoSamples", 1);
    renderer.setParam("backgroundColor", 1.0f); // white, transparent
    renderer.commit();

    // create and setup framebuffer
    ospray::cpp::FrameBuffer framebuffer(
        imgSize.x, imgSize.y, OSP_FB_SRGBA, OSP_FB_COLOR | OSP_FB_ACCUM);
    framebuffer.clear();

    // render one frame
    framebuffer.renderFrame(renderer, camera, world);

    // access framebuffer and write its content as PPM file
    uint32_t *fb = (uint32_t *)framebuffer.map(OSP_FB_COLOR);
    rkcommon::utility::writePPM("firstFrameCpp.ppm", imgSize.x, imgSize.y, fb);
    framebuffer.unmap(fb);

    // render 10 more frames, which are accumulated to result in a better
    // converged image
    for (int frames = 0; frames < 10; frames++)
      framebuffer.renderFrame(renderer, camera, world);

    fb = (uint32_t *)framebuffer.map(OSP_FB_COLOR);
    rkcommon::utility::writePPM(
        "accumulatedFrameCpp.ppm", imgSize.x, imgSize.y, fb);
    framebuffer.unmap(fb);

    ospray::cpp::PickResult res =
        framebuffer.pick(renderer, camera, world, 0.5f, 0.5f);

    if (res.hasHit) {
      std::cout << "Picked geometry [inst: " << res.instance.handle()
                << ", model: " << res.model.handle() << ", prim: " << res.primID
                << "]" << std::endl;
    }
  }

  ospShutdown();

  return 0;
}