1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
|
OSPRay API
==========
To access the OSPRay API you first need to include the OSPRay header
#include "ospray/ospray.h"
where the API is compatible with C99 and C++.
Initialization and Shutdown
---------------------------
To use the API, OSPRay must be initialized with a "device". A device is
the object which implements the API. Creating and initializing a device
can be done in either of two ways: command line arguments using
`ospInit` or manually instantiating a device and setting parameters on
it.
### Command Line Arguments
The first is to do so by giving OSPRay the command line from `main()` by
calling
OSPError ospInit(int *argc, const char **argv);
OSPRay parses (and removes) its known command line parameters from your
application's `main` function. For an example see the [tutorial]. For
possible error codes see section [Error Handling and Status Messages].
It is important to note that the arguments passed to `ospInit` are
processed in order they are listed. The following parameters (which are
prefixed by convention with "`--osp:`") are understood:
-------------------------------------------- -----------------------------------------------------
Parameter Description
-------------------------------------------- -----------------------------------------------------
`--osp:debug` enables various extra checks and debug output, and
disables multi-threading
`--osp:num-threads=<n>` use `n` threads instead of per default using all
detected hardware threads
`--osp:log-level=<str>` set logging level; valid values (in order of severity)
are `none`, `error`, `warning`, `info`, and `debug`
`--osp:warn-as-error` send `warning` and `error` messages through the error
callback, otherwise send `warning` messages through
the message callback; must have sufficient `logLevel`
to enable warnings
`--osp:verbose` shortcut for `--osp:log-level=info` and enable debug
output on `cout`, error output on `cerr`
`--osp:vv` shortcut for `--osp:log-level=debug` and enable debug
output on `cout`, error output on `cerr`
`--osp:load-modules=<name>[,...]` load one or more modules during initialization;
equivalent to calling `ospLoadModule(name)`
`--osp:log-output=<dst>` convenience for setting where status messages go;
valid values for `dst` are `cerr` and `cout`
`--osp:error-output=<dst>` convenience for setting where error messages go;
valid values for `dst` are `cerr` and `cout`
`--osp:device=<name>` use `name` as the type of device for OSPRay to
create; e.g., `--osp:device=cpu` gives you the
default `cpu` device; Note if the device to be used
is defined in a module, remember to pass
`--osp:load-modules=<name>` first
`--osp:set-affinity=<n>` if `1`, bind software threads to hardware threads;
`0` disables binding; default is `0`
`--osp:device-params=<param>:<value>[,...]` set one or more other device parameters; equivalent
to calling `ospDeviceSet*(param, value)`
-------------------------------------------- -----------------------------------------------------
: Command line parameters accepted by OSPRay's `ospInit`.
### Manual Device Instantiation
The second method of initialization is to explicitly create the device
and possibly set parameters. This method looks almost identical to how
other [objects] are created and used by OSPRay (described in later
sections). The first step is to create the device with
OSPDevice ospNewDevice(const char *type);
where the `type` string maps to a specific device implementation. OSPRay
always provides the "`cpu`" device, which maps to a fast, local CPU
implementation. Other devices can also be added through additional
modules, such as distributed MPI device implementations. See next
Chapter for details.
Once a device is created, you can call
void ospDeviceSetParam(OSPObject, const char *id, OSPDataType type, const void *mem);
to set parameters on the device. The semantics of setting parameters is
exactly the same as `ospSetParam`, which is documented below in the
[parameters] section. The following parameters can be set on all devices:
------ ------------------------ ----------------------------------------------
Type Name Description
------ ------------------------ ----------------------------------------------
int numThreads number of threads which OSPRay should use
bool disableMipMapGeneration disable the default generation of MIP maps for
textures (e.g., to save the additional memory
needed)
uint logLevel logging level; valid values (in order of
severity) are `OSP_LOG_NONE`, `OSP_LOG_ERROR`,
`OSP_LOG_WARNING`, `OSP_LOG_INFO`, and
`OSP_LOG_DEBUG`
string logOutput convenience for setting where status messages
go; valid values are `cerr` and `cout`
string errorOutput convenience for setting where error messages
go; valid values are `cerr` and `cout`
bool debug set debug mode; equivalent to `logLevel=debug`
and `numThreads=1`
bool warnAsError send `warning` and `error` messages through
the error callback, otherwise send `warning`
messages through the message callback; must
have sufficient `logLevel` to enable warnings
bool setAffinity bind software threads to hardware threads if
set to 1; 0 disables binding omitting the
parameter will let OSPRay choose
------ ------------------------ ----------------------------------------------
: Parameters shared by all devices.
Once parameters are set on the created device, the device must be
committed with
void ospDeviceCommit(OSPDevice);
To use the newly committed device, you must call
void ospSetCurrentDevice(OSPDevice);
This then sets the given device as the object which will respond to all
other OSPRay API calls.
Device handle lifetimes are managed with two calls, the first which
increments the internal reference count to the given `OSPDevice`
void ospDeviceRetain(OSPDevice)
and the second which decrements the reference count
void ospDeviceRelease(OSPDevice)
Users can change parameters on the device after initialization (from
either method above), by calling
OSPDevice ospGetCurrentDevice();
This function returns the handle to the device currently used to respond
to OSPRay API calls, where users can set/change parameters and recommit
the device. If changes are made to the device that is already set as the
current device, it does not need to be set as current again. Note this
API call will increment the ref count of the returned device handle, so
applications must use `ospDeviceRelease` when finished using the handle
to avoid leaking the underlying device object. If there is no current
device set, this will return an invalid `NULL` handle.
When a device is created, its reference count is initially `1`. When
a device is set as the current device, it internally has its reference
count incremented. Note that `ospDeviceRetain` and `ospDeviceRelease`
should only be used with reference counts that the application tracks:
removing reference held by the current set device should be handled
by `ospShutdown`. Thus, `ospDeviceRelease` should only decrement the
reference counts that come from `ospNewDevice`, `ospGetCurrentDevice`,
and the number of explicit calls to `ospDeviceRetain`.
OSPRay allows applications to query runtime properties of a device in
order to do enhanced validation of what device was loaded at runtime.
The following function can be used to get these device-specific
properties (attributes about the device, not parameter values)
int64_t ospDeviceGetProperty(OSPDevice, OSPDeviceProperty);
It returns an integer value of the queried property and the following
properties can be provided as parameter:
OSP_DEVICE_VERSION
OSP_DEVICE_VERSION_MAJOR
OSP_DEVICE_VERSION_MINOR
OSP_DEVICE_VERSION_PATCH
OSP_DEVICE_SO_VERSION
### Environment Variables
OSPRay's generic device parameters can be overridden via
environment variables for easy changes to OSPRay's behavior without
needing to change the application (variables are prefixed by convention
with "`OSPRAY_`"):
--------------------- --------------------------------------------------------
Variable Description
--------------------- --------------------------------------------------------
OSPRAY_NUM_THREADS equivalent to `--osp:num-threads`
OSPRAY_LOG_LEVEL equivalent to `--osp:log-level`
OSPRAY_LOG_OUTPUT equivalent to `--osp:log-output`
OSPRAY_ERROR_OUTPUT equivalent to `--osp:error-output`
OSPRAY_DEBUG equivalent to `--osp:debug`
OSPRAY_WARN_AS_ERROR equivalent to `--osp:warn-as-error`
OSPRAY_SET_AFFINITY equivalent to `--osp:set-affinity`
OSPRAY_LOAD_MODULES equivalent to `--osp:load-modules`, can be a comma separated
list of modules which will be loaded in order
OSPRAY_DEVICE equivalent to `--osp:device:`
--------------------- --------------------------------------------------------
: Environment variables interpreted by OSPRay.
Note that these environment variables take precedence over values
specified through `ospInit` or manually set device parameters.
### Error Handling and Status Messages
The following errors are currently used by OSPRay:
Name Description
---------------------- -------------------------------------------------------
OSP_NO_ERROR no error occurred
OSP_UNKNOWN_ERROR an unknown error occurred
OSP_INVALID_ARGUMENT an invalid argument was specified
OSP_INVALID_OPERATION the operation is not allowed for the specified object
OSP_OUT_OF_MEMORY there is not enough memory to execute the command
OSP_UNSUPPORTED_CPU the CPU is not supported (minimum ISA is SSE4.1 on x86_64 and NEON on ARM64)
OSP_VERSION_MISMATCH a module could not be loaded due to mismatching version
---------------------- -------------------------------------------------------
: Possible error codes, i.e., valid named constants of type `OSPError`.
These error codes are either directly return by some API functions, or
are recorded to be later queried by the application via
OSPError ospDeviceGetLastErrorCode(OSPDevice);
A more descriptive error message can be queried by calling
const char* ospDeviceGetLastErrorMsg(OSPDevice);
Alternatively, the application can also register a callback function of
type
typedef void (*OSPErrorCallback)(void *userData, OSPError, const char* errorDetails);
via
void ospDeviceSetErrorCallback(OSPDevice, OSPErrorCallback, void *userData);
to get notified when errors occur.
Applications may be interested in messages which OSPRay emits, whether
for debugging or logging events. Applications can call
void ospDeviceSetStatusCallback(OSPDevice, OSPStatusCallback, void *userData);
in order to register a callback function of type
typedef void (*OSPStatusCallback)(void *userData, const char* messageText);
which OSPRay will use to emit status messages. By default, OSPRay uses a
callback which does nothing, so any output desired by an application
will require that a callback is provided. Note that callbacks for C++
`std::cout` and `std::cerr` can be alternatively set through `ospInit`
or the `OSPRAY_LOG_OUTPUT` environment variable.
Applications can clear either callback by passing `NULL` instead of an
actual function pointer.
### Loading OSPRay Extensions at Runtime
OSPRay's functionality can be extended via plugins (which we call
"modules"), which are implemented in shared libraries. To load module
`name` from `libospray_module_<name>.so` (on Linux and Mac OS\ X) or
`ospray_module_<name>.dll` (on Windows) use
OSPError ospLoadModule(const char *name);
Modules are searched in OS-dependent paths. `ospLoadModule` returns
`OSP_NO_ERROR` if the plugin could be successfully loaded.
### Shutting Down OSPRay
When the application is finished using OSPRay (typically on application
exit), the OSPRay API should be finalized with
void ospShutdown();
This API call ensures that the current device is cleaned up
appropriately. Due to static object allocation having non-deterministic
ordering, it is recommended that applications call `ospShutdown`
before the calling application process terminates.
Objects
-------
All entities of OSPRay (the [renderer], [volumes], [geometries],
[lights], [cameras], ...) are a logical specialization of `OSPObject`
and share common mechanism to deal with parameters and lifetime.
An important aspect of object parameters is that parameters do not get
passed to objects immediately. Instead, parameters are not visible at
all to objects until they get explicitly committed to a given object via
a call to
void ospCommit(OSPObject);
at which time all previously additions or changes to parameters are
visible at the same time. If a user wants to change the state of an
existing object (e.g., to change the origin of an already existing
camera) it is perfectly valid to do so, as long as the changed
parameters are recommitted.
The commit semantic allow for batching up multiple small changes, and
specifies exactly when changes to objects will occur. This can impact
performance and consistency for devices crossing a PCI bus or across a
network.
Note that OSPRay uses reference counting to manage the lifetime of all
objects, so one cannot explicitly "delete" any object. Instead, to
indicate that the application does not need and does not access the
given object anymore, call
void ospRelease(OSPObject);
This decreases its reference count and if the count reaches `0` the
object will automatically get deleted. Passing `NULL` is not an error.
Note that every handle returned via the API needs to be released when
the object is no longer needed, to avoid memory leaks.
Sometimes applications may want to have more than one reference to an
object, where it is desirable for the application to increment the
reference count of an object. This is done with
void ospRetain(OSPObject);
It is important to note that this is only necessary if the application
wants to call `ospRelease` on an object more than once: objects which
contain other objects as parameters internally increment/decrement ref
counts and should not be explicitly done by the application.
### Parameters
Parameters allow to configure the behavior of and to pass data to
objects. However, objects do _not_ have an explicit interface for
reasons of high flexibility and a more stable compile-time API. Instead,
parameters are passed separately to objects in an arbitrary order, and
unknown parameters will simply be ignored (though a warning message will
be posted). The following function allows adding various types of
parameters with name `id` to a given object:
void ospSetParam(OSPObject, const char *id, OSPDataType type, const void *mem);
The valid parameter names for all `OSPObject`s and what types are valid
are discussed in future sections.
Note that `mem` must always be a pointer _to_ the object,
otherwise accidental type casting can occur. This is especially true for
pointer types (`OSP_VOID_PTR` and `OSPObject` handles), as they will
implicitly cast to `void\ *`, but be incorrectly interpreted. To help
with some of these issues, there also exist variants of `ospSetParam`
for specific types, such as `ospSetInt` and `ospSetVec3f` in the OSPRay
utility library (found in `ospray_util.h`). Note that half precision
float parameters `OSP_HALF, OSP_VEC[234]H` are not supported.
Users can also remove parameters that have been explicitly set from
`ospSetParam`. Any parameters which have been removed will go back to
their default value during the next commit unless a new parameter
was set after the parameter was removed. To remove a parameter, use
void ospRemoveParam(OSPObject, const char *id);
### Data
OSPRay consumes data arrays from the application using a specific
object type, `OSPData`. There are several components to describing a
data array: element type, 1/2/3 dimensional striding, and whether the
array is shared with the application or copied into opaque,
OSPRay-owned memory.
Shared data arrays require that the application's array memory outlives
the lifetime of the created `OSPData`, as OSPRay is referring to
application memory. Where this is not preferable, applications use
opaque arrays to allow the `OSPData` to own the lifetime of the array
memory. However, opaque arrays dictate the cost of copying data into it,
which should be kept in mind.
Thus, the most efficient way to specify a data array from the
application is to created a shared data array, which is done with
OSPData ospNewSharedData(const void *sharedData,
OSPDataType,
uint64_t numItems1,
int64_t byteStride1 = 0,
uint64_t numItems2 = 1,
int64_t byteStride2 = 0,
uint64_t numItems3 = 1,
int64_t byteStride3 = 0,
OSPDeleterCallback = NULL,
void *userData = NULL);
The call returns an `OSPData` handle to the created array. The calling
program guarantees that the `sharedData` pointer will remain valid for
the duration that this data array is being used. The number of elements
`numItems` must be positive (there cannot be an empty data object).
The data is arranged in three dimensions, with specializations to two or
one dimension (if some `numItems` are 1). The distance between
consecutive elements (per dimension) is given in bytes with `byteStride`
and can also be negative. If `byteStride` is zero it will be determined
automatically (e.g., as `sizeof(type)`). Strides do not need to be
ordered, i.e., `byteStride2` can be smaller than `byteStride1`, which is
equivalent to a transpose. However, if the stride should be calculated,
then an ordering in dimensions is assumed to disambiguate, i.e.,
`byteStride1 < byteStride2 < byteStride3`.
An application can pass ownership of shared data to OSPRay (for example,
when it temporarily created a modified version of its data only to make
it compatible with OSPRay) by providing a deleter function that OSPRay
will call whenever the time comes to deallocate the shared buffer. The
deleter function has the following signature:
typedef void (*OSPDeleterCallback)(const void *userData, const void *sharedData);
where `sharedData` will receive the address of the buffer and `userData`
will receive whatever additional state the function needs to perform the
deletion (both provided to `ospNewSharedData` when sharing the data with
OSPRay).
The enum type `OSPDataType` describes the different element types that
can be represented in OSPRay; valid constants are listed in the table
below.
-------------------------- ---------------------------------------------------
Type / Name Description
-------------------------- ---------------------------------------------------
OSP_DEVICE API device object reference
OSP_DATA data reference
OSP_OBJECT generic object reference
OSP_CAMERA camera object reference
OSP_FRAMEBUFFER framebuffer object reference
OSP_FUTURE future object reference
OSP_LIGHT light object reference
OSP_MATERIAL material object reference
OSP_TEXTURE texture object reference
OSP_RENDERER renderer object reference
OSP_WORLD world object reference
OSP_GROUP group object reference
OSP_INSTANCE instance object reference
OSP_GEOMETRY geometry object reference
OSP_GEOMETRIC_MODEL geometric model object reference
OSP_VOLUME volume object reference
OSP_VOLUMETRIC_MODEL volumetric model object reference
OSP_TRANSFER_FUNCTION transfer function object reference
OSP_IMAGE_OPERATION image operation object reference
OSP_STRING C-style zero-terminated character string
OSP_BOOL 8\ bit boolean
OSP_CHAR, OSP_VEC[234]C 8\ bit signed character scalar and [234]-element vector
OSP_UCHAR, OSP_VEC[234]UC 8\ bit unsigned character scalar and [234]-element vector
OSP_SHORT, OSP_VEC[234]S 16\ bit unsigned integer scalar and [234]-element vector
OSP_USHORT, OSP_VEC[234]US 16\ bit unsigned integer scalar and [234]-element vector
OSP_INT, OSP_VEC[234]I 32\ bit signed integer scalar and [234]-element vector
OSP_UINT, OSP_VEC[234]UI 32\ bit unsigned integer scalar and [234]-element vector
OSP_LONG, OSP_VEC[234]L 64\ bit signed integer scalar and [234]-element vector
OSP_ULONG, OSP_VEC[234]UL 64\ bit unsigned integer scalar and [234]-element vector
OSP_HALF, OSP_VEC[234]H 16\ bit half precision floating-point scalar
and [234]-element vector (IEEE 754 `binary16`)
OSP_FLOAT, OSP_VEC[234]F 32\ bit single precision floating-point scalar
and [234]-element vector
OSP_DOUBLE, OSP_VEC[234]D 64\ bit double precision floating-point scalar
and [234]-element vector
OSP_BOX[1234]I 32\ bit integer box (lower + upper bounds)
OSP_BOX[1234]F 32\ bit single precision floating-point box
(lower + upper bounds)
OSP_LINEAR[23]F 32\ bit single precision floating-point linear
transform ([23] vectors)
OSP_AFFINE[23]F 32\ bit single precision floating-point affine
transform (linear transform plus translation)
OSP_QUATF 32\ bit single precision floating-point quaternion,
in $(i, j, k, w)$ layout
OSP_VOID_PTR raw memory address (only found in module extensions)
-------------------------- ---------------------------------------------------
: Valid named constants for `OSPDataType`.
If the elements of the array are handles to objects, then their
reference counter is incremented.
An opaque `OSPData` with memory allocated by OSPRay is created with
OSPData ospNewData(OSPDataType,
uint64_t numItems1,
uint64_t numItems2 = 1,
uint64_t numItems3 = 1);
To allow for (partial) copies or updates of data arrays use
void ospCopyData(const OSPData source,
OSPData destination,
uint64_t destinationIndex1 = 0,
uint64_t destinationIndex2 = 0,
uint64_t destinationIndex3 = 0);
which will copy the whole^[The number of items to be copied is defined
by the size of the source array.] content of the `source` array into
`destination` at the given location `destinationIndex`. The
`OSPDataType`s of the data objects must match. The region to be copied
must be valid inside the destination, i.e., in all dimensions,
`destinationIndex + sourceSize <= destinationSize`. The affected region
`[destinationIndex, destinationIndex + sourceSize)` is marked as dirty,
which may be used by OSPRay to only process or update that sub-region
(e.g., updating an acceleration structure). If the destination array is
shared with OSPData by the application (created with
`ospNewSharedData`), then
- the source array must be shared as well (thus `ospCopyData` cannot
be used to read opaque data)
- if source and destination memory overlaps (aliasing), then behavior
is undefined
- except if source and destination regions are identical (including
matching strides), which can be used by application to mark that
region as dirty (instead of the whole `OSPData`)
To add a data array as parameter named `id` to another object call also
use
void ospSetObject(OSPObject, const char *id, OSPData);
Volumes
-------
Volumes are volumetric data sets with discretely sampled values in 3D
space, typically a 3D scalar field. To create a new volume object of
given type `type` use
OSPVolume ospNewVolume(const char *type);
Note that OSPRay's implementation forwards `type` directly to Open VKL,
allowing new Open VKL volume types to be usable within OSPRay without
the need to change (or even recompile) OSPRay.
### Structured Regular Volume
Structured volumes only need to store the values of the samples, because
their addresses in memory can be easily computed from a 3D position. A
common type of structured volumes are regular grids.
Structured regular volumes are created by passing the type string
"`structuredRegular`" to `ospNewVolume`. Structured volumes are
represented through an `OSPData` 3D array `data` (which may or may not
be shared with the application). The voxel data must be laid out in
xyz-order^[For consecutive memory addresses the x-index of the corresponding
voxel changes the quickest.] and can be compact (best for performance) or can
have a stride between voxels, specified through the
`byteStride1` parameter when creating the `OSPData`. Only 1D strides are
supported, additional strides between scanlines (2D, `byteStride2`) and
slices (3D, `byteStride3`) are not.
The parameters understood by structured volumes are summarized in the
table below.
------- -------------- ----------------------------- --------------------------
Type Name Default Description
------- -------------- ----------------------------- --------------------------
vec3f gridOrigin $(0, 0, 0)$ origin of the grid in
object-space
vec3f gridSpacing $(1, 1, 1)$ size of the grid cells
in object-space
OSPData data the actual voxel 3D [data]
bool cellCentered false whether the data is provided
per cell (as opposed to per
vertex)
uint filter `OSP_VOLUME_FILTER_LINEAR` filter used for
reconstructing the field,
also allowed is
`OSP_VOLUME_FILTER_NEAREST`
and
`OSP_VOLUME_FILTER_CUBIC`
uint gradientFilter same as `filter` filter used during
gradient computations
float background `NaN` value that is used when
sampling an undefined region
outside the volume domain
------- -------------- ----------------------------- --------------------------
: Configuration parameters for structured regular volumes.
The size of the volume is inferred from the size of the 3D array `data`,
as is the type of the voxel values (currently supported are:
`OSP_UCHAR`, `OSP_SHORT`, `OSP_USHORT`, `OSP_HALF`, `OSP_FLOAT`, and
`OSP_DOUBLE`). Data can be provided either per cell or per vertex (the
default), selectable via the `cellCentered` parameter (which will also
affect the computed bounding box).
### Structured Spherical Volume
Structured spherical volumes are also supported, which are created by
passing a type string of "`structuredSpherical`" to `ospNewVolume`. The
grid dimensions and parameters are defined in terms of radial distance
$r$, inclination angle $\theta$, and azimuthal angle $\phi$, conforming
with the ISO convention for spherical coordinate systems. The coordinate
system and parameters understood by structured spherical volumes are
summarized below.
![Coordinate system of structured spherical volumes.][imgStructuredSphericalCoords]
------- -------------- ----------------------------- --------------------------
Type Name Default Description
------- -------------- ----------------------------- --------------------------
vec3f gridOrigin $(0, 0, 0)$ origin of the grid in
units of $(r, \theta,
\phi)$; angles in
degrees
vec3f gridSpacing $(1, 180/dim.y, 360/dim.z)$ size of the grid cells in
units of $(r, \theta,
\phi)$, per default
covering the full sphere;
angles in degrees
OSPData data the actual voxel 3D [data]
uint filter `OSP_VOLUME_FILTER_LINEAR` filter used for
reconstructing the field,
also allowed is
`OSP_VOLUME_FILTER_NEAREST`
uint gradientFilter same as `filter` filter used during
gradient computations
float background `NaN` value that is used when
sampling an undefined region
outside the volume domain
------- -------------- ----------------------------- --------------------------
: Configuration parameters for structured spherical volumes.
The dimensions $(r, \theta, \phi)$ of the volume are inferred from the
size of the 3D array `data`, as is the type of the voxel values
(currently supported are: `OSP_UCHAR`, `OSP_SHORT`, `OSP_USHORT`,
`OSP_HALF`, `OSP_FLOAT`, and `OSP_DOUBLE`).
These grid parameters support flexible specification of spheres,
hemispheres, spherical shells, spherical wedges, and so forth. The grid
extents (computed as `[gridOrigin, gridOrigin + (dimensions - 1) *
gridSpacing]`) however must be constrained such that:
* $r \geq 0$
* $0 \leq \theta \leq 180$
* $0 \leq \phi \leq 360$
### Adaptive Mesh Refinement (AMR) Volume
OSPRay currently supports block-structured (Berger-Colella) AMR volumes.
Volumes are specified as a list of blocks, which exist at levels of
refinement in potentially overlapping regions. Blocks exist in a tree
structure, with coarser refinement level blocks containing finer blocks.
The cell width is equal for all blocks at the same refinement level,
though blocks at a coarser level have a larger cell width than finer
levels.
There can be any number of refinement levels and any number of blocks at
any level of refinement. An AMR volume type is created by passing the
type string "`amr`" to `ospNewVolume`.
Blocks are defined by three parameters: their bounds, the refinement
level in which they reside, and the scalar data contained within each
block.
Note that cell widths are defined _per refinement level_, not per block.
-------------- --------------- ----------------- -----------------------------------
Type Name Default Description
-------------- --------------- ----------------- -----------------------------------
uint method `OSP_AMR_CURRENT` `OSPAMRMethod` sampling method.
Supported methods are:
`OSP_AMR_CURRENT`
`OSP_AMR_FINEST`
`OSP_AMR_OCTANT`
float[] cellWidth NULL array of each level's cell width
box3i[] block.bounds NULL [data] array of grid sizes (in voxels)
for each AMR block
int[] block.level NULL array of each block's refinement
level
OSPData[] block.data NULL [data] array of OSPData containing
the actual scalar voxel data, only
`OSP_FLOAT` is supported as
`OSPDataType`
vec3f gridOrigin $(0, 0, 0)$ origin of the grid
vec3f gridSpacing $(1, 1, 1)$ size of the grid cells
float background `NaN` value that is used when sampling
an undefined region outside the
volume domain
-------------- --------------- ----------------- -----------------------------------
: Configuration parameters for AMR volumes.
Lastly, note that the `gridOrigin` and `gridSpacing` parameters act just
like the structured volume equivalent, but they only modify the root
(coarsest level) of refinement.
In particular, OSPRay's / Open VKL's AMR implementation was designed to
cover Berger-Colella [1]\ and Chombo\ [2] AMR data. The `method`
parameter above determines the interpolation method used when sampling
the volume.
OSP_AMR_CURRENT
: finds the finest refinement level at that cell and interpolates
through this "current" level
OSP_AMR_FINEST
: will interpolate at the closest existing cell in the volume-wide
finest refinement level regardless of the sample cell's level
OSP_AMR_OCTANT
: interpolates through all available refinement levels at that cell.
This method avoids discontinuities at refinement level boundaries at the
cost of performance
Details and more information can be found in the publication for the
implementation\ [3].
1. M.J. Berger and P. Colella, "Local adaptive mesh refinement for
shock hydrodynamics." Journal of Computational Physics 82.1 (1989):
64-84. DOI: 10.1016/0021-9991(89)90035-1
2. M. Adams, P. Colella, D.T. Graves, J.N. Johnson, N.D. Keen, T.J.
Ligocki, D.F. Martin. P.W. McCorquodale, D. Modiano. P.O. Schwartz,
T.D. Sternberg, and B. Van Straalen, "Chombo Software Package for AMR
Applications – Design Document", Lawrence Berkeley National
Laboratory Technical Report LBNL-6616E.
3. I. Wald, C. Brownlee, W. Usher, and A. Knoll, "CPU volume rendering
of adaptive mesh refinement data". SIGGRAPH Asia 2017 Symposium on
Visualization – SA ’17, 18(8), 1–8. DOI: 10.1145/3139295.3139305
### Unstructured Volume
Unstructured volumes can have their topology and geometry freely
defined. Geometry can be composed of tetrahedral, hexahedral, wedge or
pyramid cell types. The data format used is compatible with VTK and
consists of multiple arrays: vertex positions and values, vertex
indices, cell start indices, cell types, and cell values. An
unstructured volume type is created by passing the type string
"`unstructured`" to `ospNewVolume`.
Sampled cell values can be specified either per-vertex (`vertex.data`)
or per-cell (`cell.data`). If both arrays are set, `cell.data` takes
precedence.
Similar to a mesh, each cell is formed by a group of indices into the
vertices. For each vertex, the corresponding (by array index) data value
will be used for sampling when rendering, if specified. The index order
for a tetrahedron is the same as `VTK_TETRA`: bottom triangle
counterclockwise, then the top vertex.
For hexahedral cells, each hexahedron is formed by a group of eight
indices into the vertices and data values. Vertex ordering is the same
as `VTK_HEXAHEDRON`: four bottom vertices counterclockwise, then top
four counterclockwise.
For wedge cells, each wedge is formed by a group of six indices into the
vertices and data values. Vertex ordering is the same as `VTK_WEDGE`:
three bottom vertices counterclockwise, then top three counterclockwise.
For pyramid cells, each cell is formed by a group of five indices into
the vertices and data values. Vertex ordering is the same as
`VTK_PYRAMID`: four bottom vertices counterclockwise, then the top
vertex.
To maintain VTK data compatibility, the `index` array may be specified
with cell sizes interleaved with vertex indices in the following format:
$n, id_1, ..., id_n, m, id_1, ..., id_m$. This alternative `index` array
layout can be enabled through the `indexPrefixed` flag (in which case,
the `cell.type` parameter must be omitted).
------------------- ------------------ -------- ---------------------------------------
Type Name Default Description
------------------- ------------------ -------- ---------------------------------------
vec3f[] vertex.position [data] array of vertex positions
float[] vertex.data [data] array of vertex data values to
be sampled
uint32[] / uint64[] index [data] array of indices (into the
vertex array(s)) that form cells
bool indexPrefixed false indicates that the `index` array is
compatible to VTK, where the indices of
each cell are prefixed with the number
of vertices
uint32[] / uint64[] cell.index [data] array of locations (into the
index array), specifying the first index
of each cell
float[] cell.data [data] array of cell data values to be
sampled
uint8[] cell.type [data] array of cell types (VTK
compatible), only set if `indexPrefixed
= false`. Supported types are:
`OSP_TETRAHEDRON`
`OSP_HEXAHEDRON`
`OSP_WEDGE`
`OSP_PYRAMID`
bool hexIterative false hexahedron interpolation method,
defaults to fast non-iterative version
which could have rendering
inaccuracies may appear if hex is not
parallelepiped
bool precomputedNormals false whether to accelerate by precomputing,
at a cost of 12 bytes/face
float background `NaN` value that is used when sampling an
undefined region outside the volume
domain
------------------- ------------------ -------- ---------------------------------------
: Configuration parameters for unstructured volumes.
### VDB Volume
VDB volumes implement a data structure that is very similar to the data
structure outlined in Museth\ [1], they are created by passing the type
string "`vdb`" to `ospNewVolume`.
The data structure is a hierarchical regular grid at its core: Nodes are
regular grids, and each grid cell may either store a constant value
(this is called a tile), or child pointers. Nodes in VDB trees are wide:
Nodes on the first level have a resolution of 32^3^ voxels, on the next
level 16^3^, and on the leaf level 8^3^ voxels. All nodes on a given
level have the same resolution. This makes it easy to find the node
containing a coordinate using shift operations (see\ [1]). VDB leaf
nodes are implicit in OSPRay / Open VKL: they are stored as pointers to
user-provided data.
![Topology of VDB volumes.][imgVdbStructure]
VDB volumes interpret input data as constant cells (which are then
potentially filtered). This is in contrast to `structuredRegular`
volumes, which have a vertex-centered interpretation.
The VDB implementation in OSPRay / Open VKL follows the following goals:
- Efficient data structure traversal on vector architectures.
- Enable the use of industry-standard `.vdb` files created through the
OpenVDB library.
- Compatibility with OpenVDB on a leaf data level, so that `.vdb` file
may be loaded with minimal overhead.
VDB volumes have the following parameters:
---------- ----------------- -------------------------------------------------
Type Name Description
---------- ----------------- -------------------------------------------------
int maxSamplingDepth do not descend further than to this depth during
sampling, the maximum value and the default is 3
uint32[] node.level level on which each input node exists, may be 1,
2 or 3 (levels are counted from the root level
= 0 down)
vec3i[] node.origin the node origin index (per input node)
OSPData[] node.data [data] arrays with the node data (per input
node). Nodes that are tiles are expected to have
single-item arrays. Leaf-nodes with grid data
expected to have compact 3D arrays in zyx layout
(z changes most quickly) with the correct number
of voxels for the `level`. Only `OSP_FLOAT` is
supported as field `OSPDataType`.
OSPData nodesPackedDense optionally provided instead of `node.data`, a
single array of all dense node data in a
contiguous zyx layout, provided in the same order
as the corresponding `node.*` parameters
OSPData nodesPackedTile optionally provided instead of `node.data`, a
single array of all tile node data in a
contiguous layout, provided in the same order as
the corresponding `node.*` parameters
uint32[] node.format for each input node, whether it is of format
`OSP_VOLUME_FORMAT_DENSE_ZYX` (and thus stored in
`nodesPackedDense`), or `OSP_VOLUME_FORMAT_TILE`
(stored in `nodesPackedTile`)
uint filter filter used for reconstructing the field, default
is `OSP_VOLUME_FILTER_LINEAR`, alternatively
`OSP_VOLUME_FILTER_NEAREST`, or
`OSP_VOLUME_FILTER_CUBIC`.
uint gradientFilter filter used for reconstructing the field during
gradient computations, default same as `filter`
float background value that is used when sampling an undefined
region outside the volume domain, default `NaN`
---------- ----------------- -------------------------------------------------
: Configuration parameters for VDB volumes.
The `nodesPackedDense` and `nodesPackedTile` together with `node.format`
parameters may be provided instead of `node.data`; this packed data
layout may provide better performance.
1. Museth, K. VDB: High-Resolution Sparse Volumes with Dynamic Topology.
ACM Transactions on Graphics 32(3), 2013. DOI: 10.1145/2487228.2487235
### Particle Volume
Particle volumes consist of a set of points in space. Each point has a
position, a radius, and a weight typically associated with an attribute.
Particle volumes are created by passing the type string "`particle`" to
`ospNewVolume`.
A radial basis function defines the contribution of that particle.
Currently, we use the Gaussian radial basis function
$$\phi(P) = w \exp\left(-\frac{(P - p)^2}{2 r^2}\right),$$
where $P$ is the particle position, $p$ is the sample position, $r$ is
the radius and $w$ is the weight. At each sample, the scalar field value
is then computed as the sum of each radial basis function $\phi$, for
each particle that overlaps it.
The OSPRay / Open VKL implementation is similar to direct evaluation of
samples in Reda et al.\ [2]. It uses an Embree-built BVH with a custom
traversal, similar to the method in\ [1].
-------- ----------------------- -------- ---------------------------------------
Type Name Default Description
-------- ----------------------- -------- ---------------------------------------
vec3f[] particle.position [data] array of particle positions
float[] particle.radius [data] array of particle radii
float[] particle.weight NULL optional [data] array of particle
weights, specifying the height of the
kernel.
float radiusSupportFactor 3.0 The multiplier of the particle radius
required for support. Larger radii
ensure smooth results at the cost of
performance. In the Gaussian kernel,
the radius is one standard deviation
($\sigma$), so a value of 3 corresponds
to $3 \sigma$.
float clampMaxCumulativeValue 0 The maximum cumulative value possible,
set by user. All cumulative values will
be clamped to this, and further
traversal (RBF summation) of particle
contributions will halt when this value
is reached. A value of zero or less
turns this off.
bool estimateValueRanges true Enable heuristic estimation of value
ranges which are used in internal
acceleration structures as well as for
determining the volume's overall value
range. When set to `false`, the user
*must* specify
`clampMaxCumulativeValue`, and all value
ranges will be assumed
[0–`clampMaxCumulativeValue`]. Disabling
this switch may improve volume commit
time, but will make volume rendering
less efficient.
-------- ----------------------- -------- ---------------------------------------
: Configuration parameters for particle volumes.
1. A. Knoll, I. Wald, P. Navratil, A. Bowen, K. Reda, M.E., Papka, and
K. Gaither, "RBF Volume Ray Casting on Multicore and Manycore CPUs",
2014, Computer Graphics Forum, 33: 71–80. doi:10.1111/cgf.12363
2. K. Reda, A. Knoll, K. Nomura, M. E. Papka, A. E. Johnson and J. Leigh,
"Visualizing large-scale atomistic simulations in ultra-resolution immersive
environments", 2013 IEEE Symposium on Large-Scale Data Analysis and
Visualization (LDAV), Atlanta, GA, 2013, pp. 59–65.
### Transfer Function
Transfer functions map the scalar values of volumes to color and opacity
and thus they can be used to visually emphasize certain features of the
volume. To create a new transfer function of given type `type` use
OSPTransferFunction ospNewTransferFunction(const char *type);
The returned handle can be assigned to a volumetric model (described
below) as parameter "`transferFunction`" using `ospSetObject`.
One type of transfer function that is supported by OSPRay is the linear
transfer function, which interpolates between given equidistant colors
and opacities. It is create by passing the string "`piecewiseLinear`"
to `ospNewTransferFunction` and it is controlled by these parameters:
Type Name Description
------------ ----------- ----------------------------------------------
vec3f[] color [data] array of colors (linear RGB)
float[] opacity [data] array of opacities
box1f value domain (scalar range) this function maps from
------------ ----------- ----------------------------------------------
: Parameters accepted by the linear transfer function.
The arrays `color` and `opacity` can be of different length.
### VolumetricModels
Volumes in OSPRay are given volume rendering appearance information
through VolumetricModels. This decouples the physical representation of
the volume (and possible acceleration structures it contains) to
rendering-specific parameters (where more than one set may exist
concurrently). To create a volume instance, call
OSPVolumetricModel ospNewVolumetricModel(OSPVolume);
The passed volume can be `NULL` as long as the volume to be used is
passed as a parameter. If both a volume is specified on object creation
and as a parameter, the parameter value is used. If the parameter value
is later removed, the volume object passed on object creation is again
used.
-------------------- ----------------- -------- --------------------------------------
Type Name Default Description
-------------------- ----------------- -------- --------------------------------------
OSPVolume volume optional [volume] object this model
references
OSPTransferFunction transferFunction [transfer function] to use
float densityScale 1.0 makes volumes uniformly thinner or
thicker
float anisotropy 0.0 anisotropy of the (Henyey-Greenstein)
phase function in [-1–1] ([path tracer]
only), default to isotropic scattering
uint32 id -1u optional user ID, for [framebuffer] channel `OSP_FB_ID_OBJECT`
-------------------- ----------------- -------- ---------------------------------------
: Parameters understood by VolumetricModel.
Geometries
----------
Geometries in OSPRay are objects that describe intersectable surfaces.
To create a new geometry object of given type `type` use
OSPGeometry ospNewGeometry(const char *type);
Note that in the current implementation geometries are limited to a
maximum of 2^32^ primitives.
### Mesh
A mesh consisting of either triangles or quads is created by calling
`ospNewGeometry` with type string "`mesh`". Once created, a mesh
recognizes the following parameters:
-------------------- ----------------------- ---------------------------------
Type Name Description
-------------------- ----------------------- ---------------------------------
vec3f[] vertex.position [data] array of vertex positions,
overridden by `motion.*` arrays
vec3f[] normal [data] array of face-varying
normals, overridden by `motion.*`
arrays
vec3f[] vertex.normal [data] array of vertex-varying
normals, overridden by `motion.*`
arrays
vec4f[] / vec3f[] color [data] array of face-varying
colors (linear RGBA/RGB)
vec4f[] / vec3f[] vertex.color [data] array of vertex-varying
colors (linear RGBA/RGB)
vec2f[] texcoord [data] array of face-varying
texture coordinates
vec2f[] vertex.texcoord [data] array of vertex-varying
texture coordinates
vec3ui[] / vec4ui[] index [data] array of (either triangle
or quad) indices (into the vertex
array(s))
bool quadSoup when no explicit `index` is
given, indicates whether to
assume a 'soup' of quads instead
of triangles, default false
vec3f[][] motion.vertex.position [data] array of vertex position
arrays (uniformly distributed
keys for deformation motion blur)
vec3f[][] motion.normal [data] array of face-varying
normal arrays (uniformly
distributed keys for deformation
motion blur)
vec3f[][] motion.vertex.normal [data] array of vertex-varying
normal arrays (uniformly
distributed keys for deformation
motion blur)
box1f time time associated with first and
last key in `motion.*` arrays
(for deformation motion blur),
default [0, 1]
-------------------- ----------------------- ---------------------------------
: Parameters defining a mesh geometry.
The data type of index arrays differentiates between the underlying
geometry, triangles are used for a index with `vec3ui` type and quads
for `vec4ui` type. Quads are internally handled as a pair of two
triangles, thus mixing triangles and quads is supported by encoding some
triangle as a quad with the last two vertex indices being identical
(`w=z`).
The `vertex.position` array is mandatory to create a valid mesh.
The `index` array is optional. If none is provided, a 'triangle soup' is
assumed, i.e., each three consecutive vertices form one triangle; unless
the boolean `quadSoup` is set to true, then a 'quad soup' is assumed
i.e., each four subsequent vertices form one quad. If the size of the
`vertex.position` array is not a multiple of three for triangles or four
for quads, the remainder vertices are ignored.
Face-varying attributes (`normal`, `motion.normal`, `color`, `texcoord`)
map unique values to each vertex of a primitive/face (triangle or quad),
thus attributes can be different for the same vertex that is shared by
multiple primitives. Essentially, face-varying attributes are a
'attribute soup' and behave similar to the implicit index, the size of
the array must be at least three times the number of triangles or four
times the number of quads, respectively. Face-varying attributes take
precedence over the respective vertex attributes (`vertex.normal`,
`motion.vertex.normal`, `vertex.color`, `vertex.texcoord`) when both
arrays of the same attribute are present.
### Subdivision
A mesh consisting of subdivision surfaces, created by specifying a
geometry of type "`subdivision`". Once created, a subdivision recognizes
the following parameters:
------- ------------------- --------------------------------------------------
Type Name Description
------- ------------------- --------------------------------------------------
vec3f[] vertex.position [data] array of vertex positions
vec4f[] color optional [data] array of face-varying colors (linear
RGBA)
vec4f[] vertex.color optional [data] array of vertex-varying colors (linear
RGBA)
vec2f[] texcoord optional [data] array of vertex-varying texture
coordinates
vec2f[] vertex.texcoord optional [data] array of vertex-varying texture
coordinates
float level global level of tessellation, default 5
uint[] index [data] array of indices (into the vertex array(s))
float[] index.level optional [data] array of per-edge levels of
tessellation, overrides global level
uint[] face optional [data] array holding the number of
indices/edges (3 to 15) per face,
defaults to 4 (a pure quad mesh)
vec2i[] edgeCrease.index optional [data] array of edge crease indices
float[] edgeCrease.weight optional [data] array of edge crease weights
uint[] vertexCrease.index optional [data] array of vertex crease indices
float[] vertexCrease.weight optional [data] array of vertex crease weights
uint mode `OSPSubdivisionMode` subdivision edge boundary mode, supported modes
are:
`OSP_SUBDIVISION_NO_BOUNDARY`
`OSP_SUBDIVISION_SMOOTH_BOUNDARY` (default)
`OSP_SUBDIVISION_PIN_CORNERS`
`OSP_SUBDIVISION_PIN_BOUNDARY`
`OSP_SUBDIVISION_PIN_ALL`
------- ------------------- --------------------------------------------------
: Parameters defining a Subdivision geometry.
The `vertex` and `index` arrays are mandatory to create a valid
subdivision surface. If no `face` array is present then a pure quad
mesh is assumed (the number of indices must be a multiple of 4).
Optionally supported are edge and vertex creases.
### Spheres
A geometry consisting of individual spheres, each of which can have an
own radius, is created by calling `ospNewGeometry` with type string
"`sphere`". The spheres will not be tessellated but rendered
procedurally and are thus perfectly round. To allow a variety of sphere
representations in the application this geometry allows a flexible way
of specifying the data of center position and radius within a [data]
array:
-------- ---------------- -------- ---------------------------------------
Type Name Default Description
-------- ---------------- -------- ---------------------------------------
vec3f[] sphere.position [data] array of center positions
float[] sphere.radius NULL optional [data] array of the per-sphere
radius
vec3f[] sphere.normal NULL optional [data](#data) array of normals
(only for “oriented disc”)
vec2f[] sphere.texcoord NULL optional [data] array of texture
coordinates (constant per sphere)
float radius 0.01 default radius for all spheres
(if `sphere.radius` is not set)
uint type `OSPSphereType` for rendering the sphere.
Supported types are:
`OSP_SPHERE` (default)
`OSP_DISC`
`OSP_ORIENTED_DISC`
-------- ---------------- -------- ---------------------------------------
: Parameters defining a spheres geometry.
### Curves
A geometry consisting of multiple curves is created by calling
`ospNewGeometry` with type string "`curve`". The parameters defining
this geometry are listed in the table below.
------------------ ---------------------- -------------------------------------------
Type Name Description
------------------ ---------------------- -------------------------------------------
vec4f[] vertex.position_radius [data] array of vertex position and
per-vertex radius
vec2f[] vertex.texcoord [data] array of per-vertex texture coordinates
vec4f[] vertex.color [data] array of corresponding vertex
colors (linear RGBA)
vec3f[] vertex.normal [data] array of curve normals (only for
"ribbon" curves)
vec4f[] vertex.tangent [data] array of curve tangents (only for
"hermite" curves)
uint32[] index [data] array of indices to the first vertex
or tangent of a curve segment
uint type `OSPCurveType` for rendering the curve.
Supported types are:
`OSP_FLAT`
`OSP_ROUND`
`OSP_RIBBON`
`OSP_DISJOINT`
uint basis `OSPCurveBasis` for defining the curve.
Supported bases are:
`OSP_LINEAR`
`OSP_BEZIER`
`OSP_BSPLINE`
`OSP_HERMITE`
`OSP_CATMULL_ROM`
------------------ ---------------------- -------------------------------------------
: Parameters defining a curves geometry.
Positions in `vertex.position_radius` parameter supports per-vertex varying
radii with data type `vec4f[]` and instantiate Embree curves internally
for the relevant type/basis mapping.
The following section describes the properties of different curve basis'
and how they use the data provided in data buffers:
OSP_LINEAR
: The indices point to the first of 2 consecutive control points in the
vertex buffer. The first control point is the start and the second
control point the end of the line segment. The curve goes through all
control points listed in the vertex buffer.
OSP_BEZIER
: The indices point to the first of 4 consecutive control points in the
vertex buffer. The first control point represents the start point of the
curve, and the 4th control point the end point of the curve. The Bézier
basis is interpolating, thus the curve does go exactly through the first
and fourth control vertex.
OSP_BSPLINE
: The indices point to the first of 4 consecutive control points in the
vertex buffer. This basis is not interpolating, thus the curve does in
general not go through any of the control points directly. Using this
basis, 3 control points can be shared for two continuous neighboring
curve segments, e.g., the curves $(p0, p1, p2, p3)$ and $(p1, p2, p3,
p4)$ are C1 continuous. This feature make this basis a good choice to
construct continuous multi-segment curves, as memory consumption can be
kept minimal.
OSP_HERMITE
: It is necessary to have both vertex buffer and tangent buffer for
using this basis. The indices point to the first of 2 consecutive points
in the vertex buffer, and the first of 2 consecutive tangents in the
tangent buffer. This basis is interpolating, thus does exactly go
through the first and second control point, and the first order
derivative at the begin and end matches exactly the value specified in
the tangent buffer. When connecting two segments continuously, the end
point and tangent of the previous segment can be shared.
OSP_CATMULL_ROM
: The indices point to the first of 4 consecutive control points in the
vertex buffer. If $(p0, p1, p2, p3)$ represent the points then this basis
goes through $p1$ and $p2$, with tangents as $(p2-p0)/2$ and $(p3-p1)/2$.
The following section describes the properties of different curve types'
and how they define the geometry of a curve:
OSP_FLAT
: This type enables faster rendering as the curve is rendered as a
connected sequence of ray facing quads.
OSP_ROUND
: This type enables rendering a real geometric surface for the curve
which allows closeup views. This mode renders a sweep surface by
sweeping a varying radius circle tangential along the curve.
OSP_RIBBON
: The type enables normal orientation of the curve and requires a normal
buffer be specified along with vertex buffer. The curve is rendered as a
flat band whose center approximately follows the provided vertex buffer
and whose normal orientation approximately follows the provided normal
buffer. Not supported for basis `OSP_LINEAR`.
OSP_DISJOINT
: Only supported for basis `OSP_LINEAR`; the segments are open and not
connected at the joints, i.e., the curve segments are either individual
cones or cylinders.
### Boxes
OSPRay can directly render axis-aligned bounding boxes without the need
to convert them to quads or triangles. To do so create a boxes
geometry by calling `ospNewGeometry` with type string "`box`".
Type Name Description
---------- ---------- ------------------------------------------------------
box3f[] box [data] array of boxes
---------- ---------- ------------------------------------------------------
: Parameters defining a boxes geometry.
### Planes
OSPRay can directly render planes defined by plane equation coefficients
in its implicit form $ax + by + cz + d = 0$. By default planes are
infinite but their extents can be limited by defining optional bounding
boxes. A planes geometry can be created by calling `ospNewGeometry` with
type string "`plane`".
Type Name Description
---------- ------------------ -------------------------------------------------
vec4f[] plane.coefficients [data] array of plane coefficients $(a, b, c, d)$
box3f[] plane.bounds optional [data] array of bounding boxes
---------- ------------------ -------------------------------------------------
: Parameters defining a planes geometry.
### Isosurfaces
OSPRay can directly render multiple isosurfaces of a volume without
first tessellating them. To do so create an isosurfaces geometry by
calling `ospNewGeometry` with type string "`isosurface`".
The appearance information of the surfaces is set through
the Geometric Model. Per-isosurface colors can be set by passing
per-primitive colors to the Geometric Model, in order of the isosurface
array.
Type Name Description
------------------ --------- --------------------------------------------------
float isovalue single isovalues
float[] isovalue [data] array of isovalues
OSPVolume volume handle of the [Volume] to be isosurfaced
------------------ --------- --------------------------------------------------
: Parameters defining an isosurfaces geometry.
### GeometricModels
Geometries are matched with surface appearance information through
GeometricModels. These take a geometry, which defines the surface
representation, and applies either full-object or per-primitive color
and material information. To create a geometric model, call
OSPGeometricModel ospNewGeometricModel(OSPGeometry);
The passed geometry can be `NULL` as long as the geometry to be used is
passed as a parameter. If both a geometry is specified on object creation
and as a parameter, the parameter value is used. If the parameter value
is later removed, the geometry object passed on object creation is again
used.
Color and material are fetched with the primitive ID of the hit (clamped
to the valid range, thus a single color or material is fine), or mapped
first via the `index` array (if present). All parameters are optional,
however, some renderers (notably the [path tracer]) require a material
to be set. Materials are either handles of `OSPMaterial`, or indices
into the `material` array on the [renderer], which allows to build a
[world] which can be used by different types of renderers.
An `invertNormals` flag allows to invert (shading) normal vectors of the
rendered geometry. That is particularly useful for clipping. By changing
normal vectors orientation one can control whether inside or outside of
the clipping geometry is being removed. For example, a clipping geometry
with normals oriented outside clips everything what's inside.
----------------------------------------------- ------------- ----------------------------------------------------
Type Name Description
----------------------------------------------- ------------- ----------------------------------------------------
OSPGeometry geometry optional [geometry] object this model references
OSPMaterial / OSPMaterial[] / uint32 / uint32[] material optional ([data] array of per-primitive) [material],
may be an index into the `material` parameter on
the renderer (if it exists)
vec4f / vec4f[] color optional ([data] array of per-primitive) color
assigned to the geometry (linear RGBA)
uint8[] index optional [data] array of per-primitive indices into
`color` and `material`
bool invertNormals inverts all shading normals (Ns), default false
uint32 id optional user ID, for [framebuffer] channel
`OSP_FB_ID_OBJECT`, default -1u
----------------------------------------------- ------------- ----------------------------------------------------
: Parameters understood by GeometricModel.
Lights
------
To create a new light source of given type `type` use
OSPLight ospNewLight(const char *type);
All light sources accept the following parameters:
--------- ------------------ -------- --------------------------------------------
Type Name Default Description
--------- ------------------ -------- --------------------------------------------
vec3f color white color of the light (linear RGB)
float intensity 1 intensity of the light (a factor)
uint intensityQuantity `OSPIntensityQuantity` to set the radiometric
quantity represented by `intensity`. The
default value depends on the light source.
bool visible true whether the light can be directly seen
--------- ------------------ -------- --------------------------------------------
: Parameters accepted by all lights.
In OSPRay the `intensity` parameter of a light source can correspond to
different types of radiometric quantities. The type of the value
represented by a light's `intensity` parameter is set using
`intensityQuantity`, which accepts values from the enum type
`OSPIntensityQuantity`. The supported types of `OSPIntensityQuantity`
differ between the different light sources (see documentation of each
specific light source).
---------------------------------- ----------------------------------------------------
Name Description
---------------------------------- ----------------------------------------------------
OSP_INTENSITY_QUANTITY_POWER the overall amount of light energy emitted by the
light source into the scene, unit is W
OSP_INTENSITY_QUANTITY_INTENSITY the overall amount of light emitted by the light in
a given direction, unit is W/sr
OSP_INTENSITY_QUANTITY_RADIANCE the amount of light emitted by a point on the
light source in a given direction, unit is W/sr/m^2^
OSP_INTENSITY_QUANTITY_IRRADIANCE the amount of light arriving at a surface point,
assuming the light is oriented towards to the
surface, unit is W/m^2^
OSP_INTENSITY_QUANTITY_SCALE a linear scaling factor for light sources with a
built-in quantity (e.g., `HDRI`, or `sunSky`, or
when using `intensityDistribution`).
---------------------------------- ----------------------------------------------------
: Types of radiometric quantities used to interpret a light's `intensity` parameter.
### Photometric Lights
Measured light sources (IES, EULUMDAT, ...) are supported by the
`sphere`, `spot`, and `quad` lights when setting an
`intensityDistribution` [data] array to modulate the intensity per
direction. The mapping is using the C-γ coordinate system (see also
below figure): the values of the first (or only) dimension of
`intensityDistribution` are uniformly mapped to γ in [0–π]; the first
intensity value to 0, the last value to π, thus at least two values need
to be present.
![C-γ coordinate system for the mapping of `intensityDistribution` with
photometric lights.][imgCGammaCoords]
If the array has a second dimension then the intensities are not
rotational symmetric around the main direction (where angle γ is zero),
but are accordingly mapped to the C-halfplanes in [0–2π]; the first
"row" of values to 0 and 2π, the other rows such that they have uniform
distance to its neighbors. The orientation of the C0-plane is specified
via `c0`.
---------- --------------------- ---------------------------------------------
Type Name Description
---------- --------------------- ---------------------------------------------
float[] intensityDistribution luminous intensity distribution for
photometric lights; can be 2D for asymmetric
illumination; values are assumed to be
uniformly distributed
vec3f c0 orientation, i.e., direction of the
C0-(half)plane (only needed if illumination
via `intensityDistribution` is asymmetric)
---------- --------------------- ---------------------------------------------
: Special parameters for photometric lights.
When using an `intensityDistribution` then the default and only valid
value for `intensityQuantity` is `OSP_INTENSITY_QUANTITY_SCALE`.
The following light types are supported by most OSPRay renderers.
### Directional Light / Distant Light
The distant light (or traditionally the directional light) is thought to
be far away (outside of the scene), thus its light arrives (almost) as
parallel rays. It is created by passing the type string "`distant`" to
`ospNewLight`. The distant light supports
`OSP_INTENSITY_QUANTITY_RADIANCE` and
`OSP_INTENSITY_QUANTITY_IRRADIANCE` (default) as `intensityQuantity`
parameter value. In addition to the [general parameters](#lights)
understood by all lights the distant light supports the following
special parameters:
Type Name Default Description
--------- ---------------- ------------ ---------------------------------------------
vec3f direction $(0, 0, 1)$ main emission direction of the distant light
float angularDiameter 0 apparent size (angle in degree) of the light
--------- ---------------- ------------ ---------------------------------------------
: Special parameters accepted by the distant light.
Setting the angular diameter to a value greater than zero will result in
soft shadows when the renderer uses stochastic sampling (like the [path
tracer]). For instance, the apparent size of the sun is about 0.53°.
### Point Light / Sphere Light
The sphere light (or the special case point light) is a light emitting
uniformly in all directions from the surface toward the outside. It does
not emit any light toward the inside of the sphere. It is created by
passing the type string "`sphere`" to `ospNewLight`. The point light
supports only `OSP_INTENSITY_QUANTITY_SCALE` when
`intensityDistribution` is set, or otherwise
`OSP_INTENSITY_QUANTITY_POWER`, `OSP_INTENSITY_QUANTITY_INTENSITY` (then
default) and `OSP_INTENSITY_QUANTITY_RADIANCE` as `intensityQuantity`
parameter value. In addition to the [general parameters](#lights)
understood by all lights and the [photometric
parameters](#photometric-lights) the sphere light supports the following
special parameters:
Type Name Default Description
------- ---------- ------------ --------------------------------
vec3f position $(0, 0, 0)$ the center of the sphere light
float radius 0 the size of the sphere light
vec3f direction $(0, 0, 1)$ main orientation of `intensityDistribution`
------- ---------- ------------ --------------------------------
: Special parameters accepted by the sphere light.
Setting the radius to a value greater than zero will result in soft
shadows when the renderer uses stochastic sampling (like the [path
tracer]).
### Spotlight / Ring Light
The spotlight is a light emitting into a cone of directions. It is
created by passing the type string "`spot`" to `ospNewLight`. The
spotlight
supports only `OSP_INTENSITY_QUANTITY_SCALE` when
`intensityDistribution` is set, or otherwise
`OSP_INTENSITY_QUANTITY_POWER`,
`OSP_INTENSITY_QUANTITY_INTENSITY` (then default) and
`OSP_INTENSITY_QUANTITY_RADIANCE` as `intensityQuantity` parameter
value. In addition to the [general parameters](#lights) understood by
all lights and the [photometric parameters](#photometric-lights) the
spotlight supports the special parameters listed in the table.
---------- --------------------- ----------- ---------------------------------
Type Name Default Description
---------- --------------------- ----------- ---------------------------------
vec3f position $(0, 0, 0)$ the center of the spotlight
vec3f direction $(0, 0, 1)$ main emission direction of the
spot
float openingAngle 180 full opening angle (in degree) of
the spot; outside of this cone is
no illumination
float penumbraAngle 5 size (angle in degree) of the
"penumbra", the region between
the rim (of the illumination
cone) and full intensity of the
spot; should be smaller than half
of `openingAngle`
float radius 0 the size of the spotlight, the
radius of a disk with normal
`direction`
float innerRadius 0 in combination with
`radius` turns the disk
into a ring
---------- --------------------- ----------- ---------------------------------
: Special parameters accepted by the spotlight.
![Angles used by the spotlight.][imgSpotLight]
Setting the radius to a value greater than zero will result in soft
shadows when the renderer uses stochastic sampling (like the [path
tracer]). Additionally setting the inner radius will result in a ring
instead of a disk emitting the light.
### Quad Light
The quad^[actually a parallelogram] light is a planar, procedural area
light source emitting uniformly on one side into the half-space. It is
created by passing the type string "`quad`" to `ospNewLight`. The quad
light supports only `OSP_INTENSITY_QUANTITY_SCALE` when
`intensityDistribution` is set, or otherwise
`OSP_INTENSITY_QUANTITY_POWER`, `OSP_INTENSITY_QUANTITY_INTENSITY` and
`OSP_INTENSITY_QUANTITY_RADIANCE` (then default) as `intensityQuantity`
parameter. In addition to the [general parameters](#lights) understood
by all lights and the [photometric parameters](#photometric-lights) the
quad light supports the following special parameters:
Type Name Default Description
------ --------- ------------ -----------------------------------------
vec3f position $(0, 0, 0)$ position of one vertex of the quad light
vec3f edge1 $(1, 0, 0)$ vector to one adjacent vertex
vec3f edge2 $(0, 1, 0)$ vector to the other adjacent vertex
------ --------- ------------ -----------------------------------------
: Special parameters accepted by the quad light.
![Defining a quad light which emits toward the reader.][imgQuadLight]
The emission side is determined by the cross product of `edge1`×`edge2`.
which is also the main emission direction for `intensityDistribution`.
Note that only renderers that use stochastic sampling (like the path
tracer) will compute soft shadows from the quad light. Other renderers
will just sample the center of the quad light, which results in hard
shadows.
### Cylinder Light
The cylinder light is a cylinderical, procedural area light source
emitting uniformly outwardly into the space beyond the boundary. It is
created by passing the type string "`cylinder`" to `ospNewLight`. The
cylinder light supports `OSP_INTENSITY_QUANTITY_POWER`,
`OSP_INTENSITY_QUANTITY_INTENSITY` and `OSP_INTENSITY_QUANTITY_RADIANCE`
(default) as `intensityQuantity` parameter. In addition to the [general
parameters](#lights) understood by all lights the cylinder light supports
the following special parameters:
Type Name Default Description
------- ----------- ------------ --------------------------------------
vec3f position0 $(0, 0, 0)$ position of the start of the cylinder
vec3f position1 $(0, 0, 1)$ position of the end of the cylinder
float radius 1 radius of the cylinder
------- ----------- ------------ --------------------------------------
: Special parameters accepted by the cylinder light.
Note that only renderers that use stochastic sampling (like the path
tracer) will compute soft shadows from the cylinder light. Other renderers
will just sample the closest point on the cylinder light, which results in
hard shadows.
### HDRI Light
The HDRI light is a textured light source surrounding the scene and
illuminating it from infinity. It is created by passing the type string
"`hdri`" to `ospNewLight`. The values of the HDRI correspond to radiance
and therefore the HDRI light only accepts `OSP_INTENSITY_QUANTITY_SCALE`
as `intensityQuantity` parameter value.
In addition to the [general parameters](#lights) the HDRI light
supports the following special parameters:
------------ --------- ------------ --------------------------------------------------
Type Name Default Description
------------ --------- ------------ --------------------------------------------------
vec3f up $(0, 1, 0)$ up direction of the light
vec3f direction $(0, 0, 1)$ direction to which the center of the texture will
be mapped to (analog to [panoramic camera])
OSPTexture map environment map in latitude / longitude format
------------ --------- ------------ --------------------------------------------------
: Special parameters accepted by the HDRI light.
![Orientation and Mapping of an HDRI Light.][imgHDRILight]
Note that the [SciVis renderer] only shows the HDRI light in the
background (like an environment map) without computing illumination of
the scene.
### Ambient Light
The ambient light surrounds the scene and illuminates it from infinity
with constant radiance (determined by combining the [parameters `color`
and `intensity`](#lights)). It is created by passing the type string
"`ambient`" to `ospNewLight`. The ambient light supports
`OSP_INTENSITY_QUANTITY_RADIANCE` and
`OSP_INTENSITY_QUANTITY_IRRADIANCE` (default) as `intensityQuantity`
parameter value.
Note that the [SciVis renderer] uses ambient lights to control the color
and intensity of the computed ambient occlusion (AO).
### Sun-Sky Light
The sun-sky light is a combination of a `distant` light for the sun and
a procedural `hdri` light for the sky. It is created by passing the type
string "`sunSky`" to `ospNewLight`. The sun-sky light surrounds the
scene and illuminates it from infinity and can be used for rendering
outdoor scenes. The radiance values are calculated using the
Hošek-Wilkie sky model and solar radiance function. The underlying model
of the sun-sky light returns radiance values and therefore the light
only accepts `OSP_INTENSITY_QUANTITY_SCALE` as `intensityQuantity`
parameter value. To rescale the returned radiance of the sky model
the default value for the `intensity` parameter is set to `0.025`.
In addition to the [general parameters](#lights) the
following special parameters are supported:
--------- ---------------- ------------ -------------------------------------
Type Name Default Description
--------- ---------------- ------------ -------------------------------------
vec3f up $(0, 1, 0)$ zenith of sky
vec3f direction $(0, -1, 0)$ main emission direction of the sun
float turbidity 3 atmospheric turbidity due to
particles, in [1–10]
float albedo 0.3 ground reflectance, in [0–1]
float horizonExtension 0.01 extend the sky dome by stretching the
horizon, fraction of the lower
hemisphere to cover, in [0–1]
--------- ---------------- ------------ -------------------------------------
: Special parameters accepted by the `sunSky` light.
The lowest elevation for the sun is restricted to the horizon.
Note that the [SciVis renderer] only computes illumination from the sun
(yet the sky is still shown in the background, like an environment map).
### Emissive Objects
The [path tracer] will consider illumination by [geometries] which have
a light emitting material assigned (for example the [Luminous] or
[Principled] material).
Materials
---------
Materials describe how light interacts with surfaces, they give objects
their distinctive look. To create a new material
of given type `type` call
OSPMaterial ospNewMaterial(const char *material_type);
The returned handle can then be used to assign the material to a given
geometry with
void ospSetObject(OSPGeometricModel, "material", OSPMaterial);
### OBJ Material
The OBJ material is the workhorse material supported by both the [SciVis
renderer] and the [path tracer] (the [Ambient Occlusion renderer] only
uses the `kd` and `d` parameter). It offers widely used common properties
like diffuse and specular reflection and is based on the [MTL material
format](http://paulbourke.net/dataformats/mtl/) of Lightwave's OBJ scene
files. To create an OBJ material pass the type string "`obj`" to
`ospNewMaterial`. Its main parameters are
Type Name Default Description
------------- --------- ---------- -----------------------------------------
vec3f kd white 0.8 diffuse color (linear RGB)
vec3f ks black specular color (linear RGB)
float ns 10 shininess (Phong exponent), usually in \[2–10^4^\]
float d opaque opacity
vec3f tf black transparency filter color (linear RGB)
OSPTexture map_bump NULL normal map
------------- --------- ---------- -----------------------------------------
: Main parameters of the OBJ material.
In particular when using the path tracer it is important to adhere to
the principle of energy conservation, i.e., that the amount of light
reflected by a surface is not larger than the light arriving. Therefore
the path tracer issues a warning and renormalizes the color parameters
if the sum of `kd`, `ks`, and `tf` is larger than one in any color
channel. Similarly important to mention is that almost all materials of
the real world reflect at most only about 80% of the incoming light. So
even for a white sheet of paper or white wall paint do better not set
`kd` larger than 0.8; otherwise rendering times are unnecessary long and
the contrast in the final images is low (for example, the corners of a
white room would hardly be discernible, as can be seen in the figure
below).
![Comparison of diffuse rooms with 100% reflecting white paint (left)
and realistic 80% reflecting white paint (right), which leads to
higher overall contrast. Note that exposure has been adjusted to achieve
similar brightness levels.][imgDiffuseRooms]
If present, the color component of [geometries] is also used for the
diffuse color `kd` and the alpha component is also used for the opacity
`d`.
Normal mapping can simulate small geometric features via the texture
`map_bump`. The normals $n$ in the normal map are with respect to the
local tangential shading coordinate system and are encoded as $½(n+1)$,
thus a texel $(0.5, 0.5, 1)$^[respectively $(127, 127, 255)$ for 8\ bit
textures and $(32767, 32767, 65535)$ for 16\ bit textures] represents
the unperturbed shading normal $(0, 0, 1)$. Because of this encoding an
sRGB gamma [texture] format is ignored and normals are always fetched as
linear from a normal map. Note that the orientation of normal maps is
important for a visually consistent look: by convention OSPRay uses a
coordinate system with the origin in the lower left corner; thus a
convexity will look green toward the top of the texture image (see also
the example image of a normal map). If this is not the case flip the
normal map vertically or invert its green channel.
![Normal map representing an exalted square pyramidal
frustum.][imgNormalMap]
Note that `tf` colored transparency is implemented in the SciVis and
the path tracer but normal mapping with `map_bump` is currently supported
in the path tracer only.
All parameters (except `tf`) can be textured by passing a [texture]
handle, prefixed with "`map_`". The fetched texels are multiplied by the
respective parameter value. If only the texture is given (but not the
corresponding parameter), only the texture is used (the default value of
the parameter is *not* multiplied). The color textures `map_kd` and
`map_ks` are typically in one of the sRGB gamma encoded formats, whereas
textures `map_ns` and `map_d` are usually in a linear format (and only
the first component is used). Additionally, all textures support
[texture transformations].
![Rendering of a OBJ material with wood textures.][imgMaterialOBJ]
### Principled
The Principled material is the most complex material offered by the
[path tracer], which is capable of producing a wide variety of materials
(e.g., plastic, metal, wood, glass) by combining multiple different layers
and lobes. It uses the GGX microfacet distribution with approximate multiple
scattering for dielectrics and metals, uses the Oren-Nayar model for diffuse
reflection, and is energy conserving. To create a Principled material, pass
the type string "`principled`" to `ospNewMaterial`. Its parameters are
listed in the table below.
------ ----------------- ---------- ------------------------------------------------------
Type Name Default Description
------ ----------------- ---------- ------------------------------------------------------
vec3f baseColor white 0.8 base reflectivity (diffuse and/or metallic, linear
RGB)
vec3f edgeColor white edge tint (metallic only, linear RGB)
float metallic 0 mix between dielectric (diffuse and/or specular)
and metallic (specular only with complex IOR) in [0–1]
float diffuse 1 diffuse reflection weight in [0–1]
float specular 1 specular reflection/transmission weight in [0–1]
float ior 1 dielectric index of refraction
float transmission 0 specular transmission weight in [0–1]
vec3f transmissionColor white attenuated color due to transmission (Beer's law,
linear RGB)
float transmissionDepth 1 distance at which color attenuation is equal to
transmissionColor
float roughness 0 diffuse and specular roughness in [0–1], 0 is perfectly
smooth
float anisotropy 0 amount of specular anisotropy in [0–1]
float rotation 0 rotation of the direction of anisotropy in [0–1], 1 is
going full circle
float normal 1 default normal map/scale for all layers
float baseNormal 1 base normal map/scale (overrides default normal)
bool thin false flag specifying whether the material is thin or solid
float thickness 1 thickness of the material (thin only), affects the
amount of color attenuation due to specular
transmission
float backlight 0 amount of diffuse transmission (thin only) in [0–2],
1 is 50% reflection and 50% transmission, 2 is
transmission only
float coat 0 clear coat layer weight in [0–1]
float coatIor 1.5 clear coat index of refraction
vec3f coatColor white clear coat color tint (linear RGB)
float coatThickness 1 clear coat thickness, affects the amount of color
attenuation
float coatRoughness 0 clear coat roughness in [0–1], 0 is perfectly smooth
float coatNormal 1 clear coat normal map/scale (overrides default normal)
float sheen 0 sheen layer weight in [0–1]
vec3f sheenColor white sheen color tint (linear RGB)
float sheenTint 0 how much sheen is tinted from sheenColor toward
baseColor
float sheenRoughness 0.2 sheen roughness in [0–1], 0 is perfectly smooth
float opacity 1 cut-out opacity/transparency, 1 is fully opaque
vec3f emissiveColor black color (and intensity) of the emitted light
------ ----------------- ---------- ------------------------------------------------------
: Parameters of the Principled material.
All parameters can be textured by passing a [texture] handle, prefixed
with "`map_`" (e.g., "`map_baseColor`"). [texture transformations] are
supported as well.
![Rendering of a Principled coated brushed metal material with textured
anisotropic rotation and a dust layer (sheen) on top.][imgMaterialPrincipled]
### CarPaint
The CarPaint material is a specialized version of the Principled material for
rendering different types of car paints. To create a CarPaint material, pass
the type string "`carPaint`" to `ospNewMaterial`. Its parameters are listed
in the table below.
------ ----------------- ---------- ------------------------------------------------------
Type Name Default Description
------ ----------------- ---------- ------------------------------------------------------
vec3f baseColor white 0.8 diffuse base reflectivity (linear RGB)
float roughness 0 diffuse roughness in [0–1], 0 is perfectly smooth
float normal 1 normal map/scale
vec3f flakeColor Aluminium color of metallic flakes (linear RGB)
float flakeDensity 0 density of metallic flakes in [0–1], 0 disables
flakes, 1 fully covers the surface with flakes
float flakeScale 100 scale of the flake structure, higher values increase
the amount of flakes
float flakeSpread 0.3 flake spread in [0–1]
float flakeJitter 0.75 flake randomness in [0–1]
float flakeRoughness 0.3 flake roughness in [0–1], 0 is perfectly smooth
float coat 1 clear coat layer weight in [0–1]
float coatIor 1.5 clear coat index of refraction
vec3f coatColor white clear coat color tint (linear RGB)
float coatThickness 1 clear coat thickness, affects the amount of color
attenuation
float coatRoughness 0 clear coat roughness in [0–1], 0 is perfectly smooth
float coatNormal 1 clear coat normal map/scale
vec3f flipflopColor white reflectivity of coated flakes at grazing angle, used
together with coatColor produces a pearlescent paint
(linear RGB)
float flipflopFalloff 1 flip flop color falloff, 1 disables the flip flop
effect
-------------------------------------------------------------------------------------------
: Parameters of the CarPaint material.
All parameters can be textured by passing a [texture] handle, prefixed
with "`map_`" (e.g., "`map_baseColor`"). [texture transformations] are
supported as well.
![Rendering of a pearlescent CarPaint material.][imgMaterialCarPaint]
### Metal
The [path tracer] offers a physical metal, supporting changing roughness
and realistic color shifts at edges. To create a Metal material pass the
type string "`metal`" to `ospNewMaterial`. Its parameters are
-------- ---------- ---------- --------------------------------------------
Type Name Default Description
-------- ---------- ---------- --------------------------------------------
vec3f[] ior Aluminium [data] array of spectral samples of complex
refractive index, each entry in the form
(wavelength, eta, k), ordered by wavelength
(which is in nm)
vec3f eta RGB complex refractive index, real part
vec3f k RGB complex refractive index, imaginary part
float roughness 0.1 roughness in [0–1], 0 is perfect mirror
-------- ---------- ---------- --------------------------------------------
: Parameters of the Metal material.
The main appearance (mostly the color) of the Metal material is
controlled by the physical parameters `eta` and `k`, the
wavelength-dependent, complex index of refraction. These coefficients
are quite counter-intuitive but can be found in [published
measurements](https://refractiveindex.info/). For accuracy the index of
refraction can be given as an array of spectral samples in `ior`, each
sample a triplet of wavelength (in nm), eta, and k, ordered
monotonically increasing by wavelength; OSPRay will then calculate the
Fresnel in the spectral domain. Alternatively, `eta` and `k` can also be
specified as approximated RGB coefficients; some examples are given in
below table.
Metal eta k
-------------- ----------------------- -----------------
Ag, Silver (0.051, 0.043, 0.041) (5.3, 3.6, 2.3)
Al, Aluminium (1.5, 0.98, 0.6) (7.6, 6.6, 5.4)
Au, Gold (0.07, 0.37, 1.5) (3.7, 2.3, 1.7)
Cr, Chromium (3.2, 3.1, 2.3) (3.3, 3.3, 3.1)
Cu, Copper (0.1, 0.8, 1.1) (3.5, 2.5, 2.4)
-------------- ----------------------- -----------------
: Index of refraction of selected metals as approximated RGB
coefficients, based on data from https://refractiveindex.info/.
The `roughness` parameter controls the variation of microfacets and thus
how polished the metal will look. The roughness can be modified by a
[texture] `map_roughness` ([texture transformations] are supported as
well) to create notable edging effects.
![Rendering of golden Metal material with textured
roughness.][imgMaterialMetal]
### Alloy
The [path tracer] offers an alloy material, which behaves similar to
[Metal], but allows for more intuitive and flexible control of the
color. To create an Alloy material pass the type string "`alloy`" to
`ospNewMaterial`. Its parameters are
Type Name Default Description
------ ---------- ---------- --------------------------------------------------------
vec3f color white 0.9 reflectivity at normal incidence (0 degree, linear RGB)
vec3f edgeColor white reflectivity at grazing angle (90 degree, linear RGB)
float roughness 0.1 roughness, in [0–1], 0 is perfect mirror
------ ---------- ---------- --------------------------------------------------------
: Parameters of the Alloy material.
The main appearance of the Alloy material is controlled by the parameter
`color`, while `edgeColor` influences the tint of reflections when seen
at grazing angles (for real metals this is always 100% white). If
present, the color component of [geometries] is also used for
reflectivity at normal incidence `color`. As in [Metal] the `roughness`
parameter controls the variation of microfacets and thus how polished
the alloy will look. All parameters can be textured by passing a
[texture] handle, prefixed with "`map_`"; [texture transformations] are
supported as well.
![Rendering of a fictional Alloy material with textured
color.][imgMaterialAlloy]
### Glass
The [path tracer] offers a realistic a glass material, supporting
refraction and volumetric attenuation (i.e., the transparency color
varies with the geometric thickness). To create a Glass material pass
the type string "`glass`" to `ospNewMaterial`. Its parameters are
Type Name Default Description
------ -------------------- -------- -----------------------------------------------
float eta 1.5 index of refraction
vec3f attenuationColor white resulting color due to attenuation (linear RGB)
float attenuationDistance 1 distance affecting attenuation
------ -------------------- -------- -----------------------------------------------
: Parameters of the Glass material.
For convenience, the rather counter-intuitive physical attenuation
coefficients will be calculated from the user inputs in such a way, that
the `attenuationColor` will be the result when white light traveled
through a glass of thickness `attenuationDistance`.
![Rendering of a Glass material with orange
attenuation.][imgMaterialGlass]
### ThinGlass
The [path tracer] offers a thin glass material useful for objects with
just a single surface, most prominently windows. It models a thin,
transparent slab, i.e., it behaves as if a second, virtual surface is
parallel to the real geometric surface. The implementation accounts for
multiple internal reflections between the interfaces (including
attenuation), but neglects parallax effects due to its (virtual)
thickness. To create a such a thin glass material pass the type string
"`thinGlass`" to `ospNewMaterial`. Its parameters are
Type Name Default Description
--------- -------------------- -------- ------------------------------------------------
float eta 1.5 index of refraction
vec3f attenuationColor white resulting color due to attenuation (linear RGB)
float attenuationDistance 1 distance affecting attenuation
float thickness 1 virtual thickness
--------- -------------------- -------- ------------------------------------------------
: Parameters of the ThinGlass material.
For convenience the attenuation is controlled the same way as with the
[Glass] material. Additionally, the color due to attenuation can be
modulated with a [texture] `map_attenuationColor` ([texture
transformations] are supported as well). If present, the color component
of [geometries] is also used for the attenuation color. The `thickness`
parameter sets the (virtual) thickness and allows for easy exchange of
parameters with the (real) [Glass] material; internally just the ratio
between `attenuationDistance` and `thickness` is used to calculate the
resulting attenuation and thus the material appearance.
![Rendering of a ThinGlass material with red
attenuation.][imgMaterialThinGlass]
![Example image of a colored window made with textured attenuation of
the ThinGlass material.][imgColoredWindow]
### MetallicPaint
The [path tracer] offers a metallic paint material, consisting of a base
coat with optional flakes and a clear coat. To create a MetallicPaint
material pass the type string "`metallicPaint`" to `ospNewMaterial`. Its
parameters are listed in the table below.
Type Name Default Description
--------- ------------ ---------- --------------------------------------
vec3f baseColor white 0.8 color of base coat (linear RGB)
float flakeAmount 0.3 amount of flakes, in [0–1]
vec3f flakeColor Aluminium color of metallic flakes (linear RGB)
float flakeSpread 0.5 spread of flakes, in [0–1]
float eta 1.5 index of refraction of clear coat
--------- ------------ ---------- --------------------------------------
: Parameters of the MetallicPaint material.
The color of the base coat `baseColor` can be textured by a [texture]
`map_baseColor`, which also supports [texture transformations]. If
present, the color component of [geometries] is also used for the color
of the base coat. Parameter `flakeAmount` controls the proportion of
flakes in the base coat, so when setting it to 1 the `baseColor` will
not be visible. The shininess of the metallic component is governed by
`flakeSpread`, which controls the variation of the orientation of the
flakes, similar to the `roughness` parameter of [Metal]. Note that the
effect of the metallic flakes is currently only computed on average,
thus individual flakes are not visible.
![Rendering of a MetallicPaint material.][imgMaterialMetallicPaint]
### Luminous
The [path tracer] supports the Luminous material which emits light
uniformly in all directions and which can thus be used to turn any
geometric object into a light source. It is created by passing the type
string "`luminous`" to `ospNewMaterial`. The amount of constant radiance
that is emitted is determined by combining the general parameters of
lights: [`color` and `intensity`](#lights) (which essentially means that
parameter `intensityQuantity` is not needed because it is always
`OSP_INTENSITY_QUANTITY_RADIANCE`).
Type Name Default Description
------ ------------ -------- ---------------------------------------
vec3f color white color of the emitted light (linear RGB)
float intensity 1 intensity of the light (a factor)
float transparency 0 material transparency
------ ------------ -------- ---------------------------------------
: Parameters accepted by the Luminous material.
The emission can be textured by passing a `map_color` [texture] handle,
[texture transformations] are supported as well.
![Rendering of a yellow Luminous material.][imgMaterialLuminous]
Texture
-------
OSPRay currently implements two texture types (`texture2d` and `volume`)
and is open for extension to other types by applications. More types may
be added in future releases.
To create a new texture use
OSPTexture ospNewTexture(const char *type);
### Texture2D
The `texture2d` texture type implements an image-based texture, where
its parameters are as follows
Type Name Description
-------------- --------- ----------------------------------
uint format `OSPTextureFormat` for the texture
uint filter default `OSP_TEXTURE_FILTER_LINEAR`, alternatively `OSP_TEXTURE_FILTER_NEAREST`
OSPData data the actual texel 2D [data]
uint / vec2ui wrapMode `OSPTextureWrapMode` for the texture coordinates s and t; supported wrap modes are:
`OSP_TEXTURE_WRAP_REPEAT` (default)
`OSP_TEXTURE_WRAP_MIRRORED_REPEAT`
`OSP_TEXTURE_WRAP_CLAMP_TO_EDGE`
-------------- --------- ----------------------------------
: Parameters of `texture2d` texture type.
The supported texture formats for `texture2d` are:
Name Description
------------------- ----------------------------------------------------------
OSP_TEXTURE_RGBA8 8\ bit [0–255] linear components red, green, blue, alpha
OSP_TEXTURE_SRGBA 8\ bit sRGB gamma encoded color components, and linear alpha
OSP_TEXTURE_RGBA32F 32\ bit float components red, green, blue, alpha
OSP_TEXTURE_RGBA16F 16\ bit float components red, green, blue, alpha
OSP_TEXTURE_RGB8 8\ bit [0–255] linear components red, green, blue
OSP_TEXTURE_SRGB 8\ bit sRGB gamma encoded components red, green, blue
OSP_TEXTURE_RGB32F 32\ bit float components red, green, blue
OSP_TEXTURE_RGB16F 16\ bit float components red, green, blue
OSP_TEXTURE_R8 8\ bit [0–255] linear single component red
OSP_TEXTURE_RA8 8\ bit [0–255] linear two components red, alpha
OSP_TEXTURE_L8 8\ bit [0–255] gamma encoded luminance (replicated into red, green, blue)
OSP_TEXTURE_LA8 8\ bit [0–255] gamma encoded luminance, and linear alpha
OSP_TEXTURE_RA32F 32\ bit float two component red, alpha
OSP_TEXTURE_R32F 32\ bit float single component red
OSP_TEXTURE_RA16F 16\ bit float two component red, alpha
OSP_TEXTURE_R16F 16\ bit float single component red
OSP_TEXTURE_RGBA16 16\ bit [0–65535] linear components red, green, blue, alpha
OSP_TEXTURE_RGB16 16\ bit [0–65535] linear components red, green, blue
OSP_TEXTURE_RA16 16\ bit [0–65535] linear two components red, alpha
OSP_TEXTURE_R16 16\ bit [0–65535] linear single component red
------------------- ----------------------------------------------------------
: Supported texture formats by `texture2d`, i.e., valid constants
of type `OSPTextureFormat`.
The size of the texture is inferred from the size of the 2D array
`data`, which also needs have a compatible type to `format`.
The texel data in `data` starts with the texels in the lower
left corner of the texture image, like in OpenGL. Per default a texture
fetch is filtered by performing bi-linear interpolation of the nearest
2×2 texels; if instead fetching only the nearest texel is desired (i.e.,
no filtering) then pass the `OSP_TEXTURE_FILTER_NEAREST` flag.
Texturing with `texture2d` image textures requires [geometries] with
texture coordinates, e.g., a [mesh] with `vertex.texcoord` provided.
### Volume Texture
The `volume` texture type implements texture lookups based on 3D object
coordinates of the surface hit point on the associated geometry. If the
given hit point is within the attached volume, the volume is sampled and
classified with the transfer function attached to the volume. This
implements the ability to visualize volume values (as colored by a
transfer function) on arbitrary surfaces inside the volume (as opposed
to an isosurface showing a particular value in the volume). Its
parameters are as follows
Type Name Description
------------------- ---------------- -----------------------------------------
OSPVolume volume [Volume] used to generate color lookups
OSPTransferFunction transferFunction [transfer function] applied to `volume`
------------------- ---------------- -----------------------------------------
: Parameters of `volume` texture type.
TextureVolume can be used for implementing slicing of volumes with any
geometry type. It enables coloring of the slicing geometry with a
different transfer function than that of the sliced volume.
### Texture Transformations
All materials with textures also offer to manipulate the placement of
these textures with the help of texture transformations. If so, this
convention shall be used: the following parameters are prefixed with
"`texture_name.*`").
Type Name Description
--------- ------------ -------------------------------------------------
linear2f transform linear transformation (rotation, scale)
float rotation angle in degree, counterclockwise, around center
vec2f scale enlarge texture, relative to center $(0.5, 0.5)$
vec2f translation move texture in positive direction (right/up)
--------- ------------ -------------------------------------------------
: Parameters to define 2D texture coordinate transformations.
Above parameters are combined into a single `affine2d` transformation
matrix and the transformations are applied in the given order. Rotation,
scale and translation are interpreted "texture centric", i.e., their
effect seen by an user are relative to the texture (although the
transformations are applied to the texture coordinates).
Type Name Description
-------- ------------ --------------------------------------------------------
affine3f transform linear transformation (rotation, scale) plus translation
-------- ------------ --------------------------------------------------------
: Parameter to define 3D volume texture transformations.
Similarly, volume texture placement can also be modified by an
`affine3f` transformation matrix.
Cameras
-------
To create a new camera of given type `type` use
OSPCamera ospNewCamera(const char *type);
All cameras accept these parameters:
----------- ----------------------- --------------------- ------------------------------------------
Type Name Default Description
----------- ----------------------- --------------------- ------------------------------------------
vec3f position $(0, 0, 0)$ position of the camera
vec3f direction $(0, 0, 1)$ main viewing direction of the camera
vec3f up $(0, 1, 0)$ up direction of the camera
affine3f transform identity additional world-space transform, overridden
by `motion.*` arrays
float nearClip 10^-6^ near clipping distance
vec2f imageStart $(0, 0)$ start of image region (lower left corner)
vec2f imageEnd $(1, 1)$ end of image region (upper right corner)
affine3f[] motion.transform additional uniformly distributed world-space
transforms
vec3f[] motion.scale additional uniformly distributed world-space
scale, overridden by `motion.transform`
vec3f[] motion.pivot additional uniformly distributed world-space
translation which is applied before
`motion.rotation` (i.e., the rotation
center), overridden by `motion.transform`
quatf[] motion.rotation additional uniformly distributed world-space
quaternion rotation, overridden by
`motion.transform`
vec3f[] motion.translation additional uniformly distributed world-space
translation, overridden by `motion.transform`
box1f time [0, 1] time associated with first and last key in
`motion.*` arrays
box1f shutter [0.5, 0.5] start and end of shutter time (for motion
blur), in [0, 1]
uint shutterType `OSP_SHUTTER_GLOBAL` `OSPShutterType` for motion blur, also
allowed are:
`OSP_SHUTTER_ROLLING_RIGHT`
`OSP_SHUTTER_ROLLING_LEFT`
`OSP_SHUTTER_ROLLING_DOWN`
`OSP_SHUTTER_ROLLING_UP`
float rollingShutterDuration 0 for a rolling shutter (see `shutterType`)
the "open" time per line, in [0,
`shutter`.upper-`shutter`.lower]
----------- ----------------------- --------------------- ------------------------------------------
: Parameters accepted by all cameras.
The camera is placed and oriented in the world with `position`,
`direction` and `up`. Additionally, an extra transformation `transform`
can be specified, which will only be applied to 3D vectors (i.e.,
`position`, `direction` and `up`), but does *not* affect any sizes
(e.g., `nearClip`, `apertureRadius`, or `height`). The same holds for
the array of transformations `motion.transform` to achieve camera motion
blur (in combination with `time` and `shutter`).
OSPRay uses a right-handed coordinate system. The region of the camera
sensor that is rendered to the image can be specified in normalized
screen-space coordinates with `imageStart` (lower left corner) and
`imageEnd` (upper right corner). This can be used, for example, to crop
the image, to achieve asymmetrical view frusta, or to horizontally flip
the image to view scenes which are specified in a left-handed coordinate
system. Note that values outside the default range of [0–1] are valid,
which is useful to easily realize overscan or film gate, or to emulate a
shifted sensor.
### Perspective Camera
The perspective camera implements a simple thin lens camera for
perspective rendering, supporting optionally depth of field and stereo
rendering (with the [path tracer]). It is created by passing the type
string "`perspective`" to `ospNewCamera`. In addition to the [general
parameters](#cameras) understood by all cameras the perspective camera
supports the special parameters listed in the table below.
----- ----------------------- ----------------- -----------------------------------------
Type Name Default Description
----- ----------------------- ----------------- -----------------------------------------
float fovy 60 the field of view (angle in degree) of
the frame's height
float aspect 1 ratio of width by height of the frame
(and image region)
float apertureRadius 0 size of the aperture, controls the depth
of field
float focusDistance 1 distance at where the image is sharpest
when depth of field is enabled
bool architectural false vertical edges are projected to be
parallel
uint stereoMode `OSP_STEREO_NONE` `OSPStereoMode` for stereo rendering,
also allowed are:
`OSP_STEREO_LEFT`
`OSP_STEREO_RIGHT`
`OSP_STEREO_SIDE_BY_SIDE`
`OSP_STEREO_TOP_BOTTOM` (left eye at top half)
float interpupillaryDistance 0.0635 distance between left and right eye when
stereo is enabled
----- ----------------------- ----------------- -----------------------------------------
: Additional parameters accepted by the perspective camera.
Note that when computing the `aspect` ratio a potentially set image region
(using `imageStart` & `imageEnd`) needs to be regarded as well.
In architectural photography it is often desired for aesthetic reasons
to display the vertical edges of buildings or walls vertically in the
image as well, regardless of how the camera is tilted. Enabling the
`architectural` mode achieves this by internally leveling the camera
parallel to the ground (based on the `up` direction) and then shifting
the lens such that the objects in direction `dir` are centered in the
image. If finer control of the lens shift is needed use `imageStart` &
`imageEnd`. Because the camera is now effectively leveled its image
plane and thus the plane of focus is oriented parallel to the front of
buildings, the whole façade appears sharp, as can be seen in the example
images below. The resolution of the [framebuffer] is not altered by
`imageStart`/`imageEnd`.
![Example image created with the perspective camera, featuring depth of
field.][imgCameraPerspective]
![Enabling the `architectural` flag corrects the perspective projection
distortion, resulting in parallel vertical
edges.][imgCameraArchitectural]
![Example 3D stereo image using `stereoMode = OSP_STEREO_SIDE_BY_SIDE`.][imgCameraStereo]
### Orthographic Camera
The orthographic camera implements a simple camera with orthographic
projection, without support for depth. It is created by passing the type
string "`orthographic`" to `ospNewCamera`. In addition to the [general
parameters](#cameras) understood by all cameras the orthographic camera
supports the following special parameters:
Type Name Description
------ ------- ------------------------------------------------------------
float height size of the camera's image plane in y, in world coordinates
float aspect ratio of width by height of the frame
------ ------- ------------------------------------------------------------
: Additional parameters accepted by the orthographic camera.
For convenience the size of the camera sensor, and thus the extent of
the scene that is captured in the image, can be controlled with the
`height` parameter. The same effect can be achieved with `imageStart`
and `imageEnd`, and both methods can be combined. In any case, the
`aspect` ratio needs to be set accordingly to get an undistorted image.
![Example image created with the orthographic camera.][imgCameraOrthographic]
### Panoramic Camera
The panoramic camera implements a simple camera with support for stereo
rendering. It captures the complete surrounding with a latitude /
longitude mapping and thus the rendered images should best have a ratio
of 2:1. A panoramic camera is created by passing the type string
"`panoramic`" to `ospNewCamera`. It is placed and oriented in the scene
by using the [general parameters](#cameras) understood by all cameras.
----- ---------------------- -----------------------------------------
Type Name Description
----- ---------------------- -----------------------------------------
uint stereoMode `OSPStereoMode` for stereo rendering,
possible values are:
`OSP_STEREO_NONE` (default)
`OSP_STEREO_LEFT`
`OSP_STEREO_RIGHT`
`OSP_STEREO_SIDE_BY_SIDE`
`OSP_STEREO_TOP_BOTTOM` (left eye at top half)
float interpupillaryDistance distance between left and right eye when
stereo is enabled, default 0.0635
----- ---------------------- -----------------------------------------
: Additional parameters accepted by the panoramic camera.
![Latitude / longitude map created with the panoramic camera.][imgCameraPanoramic]
Scene Hierarchy
---------------
### Groups
Groups in OSPRay represent collections of GeometricModels, VolumetricModels
and Lights which share a common local-space coordinate system. To
create a group call
OSPGroup ospNewGroup();
Groups take arrays of geometric models, volumetric models, clipping
geometric models and lights, but they are all optional. In other words,
there is no need to create empty arrays if there are no geometries, volumes
or lights in the group.
By adding `OSPGeometricModel`s to the `clippingGeometry` array a
clipping geometry feature is enabled. Geometries assigned to this
parameter will be used as clipping geometries. Any supported geometry
can be used for clipping^[including spheres, boxes, infinite planes,
closed meshes, closed subdivisions and curves], the only requirement is
that it has to distinctly partition space into clipping and non-clipping
one. The use of clipping geometry that is not closed or infinite could
result in rendering artifacts. User can decide which part of space is
clipped by changing shading normals orientation with the `invertNormals`
flag of the [GeometricModel]. All geometries and volumes assigned to
`geometry` or `volume` will be clipped. All clipping geometries from all
groups and [Instances] will be combined together – a union of these
areas will be applied to all other objects in the [world].
-------------------- ---------------- ---------- --------------------------------------
Type Name Default Description
-------------------- ---------------- ---------- --------------------------------------
OSPGeometricModel[] geometry NULL [data] array of [GeometricModels]
OSPVolumetricModel[] volume NULL [data] array of [VolumetricModels]
OSPGeometricModel[] clippingGeometry NULL [data] array of [GeometricModels]
used for clipping
OSPLight[] light NULL [data] array of [lights]
bool dynamicScene false tell Embree to use faster BVH build
(slower ray traversal), otherwise
optimized for faster ray traversal
(slightly slower BVH build)
bool compactMode false tell Embree to use a more compact BVH
in memory by trading ray traversal
performance
bool robustMode false tell Embree to enable more robust ray
intersection code paths (slightly
slower)
-------------------- ---------------- ---------- ---------------------------------------
: Parameters understood by groups.
### Instances
Instances in OSPRay represent a single group's placement into the world
via a transform. To create and instance call
OSPInstance ospNewInstance(OSPGroup);
The passed group can be `NULL` as long as the group to be instanced is
passed as a parameter. If both a group is specified on object creation
and as a parameter, the parameter value is used. If the parameter value
is later removed, the group object passed on object creation is again
used.
------------ ----------------- ---------- --------------------------------------------------------
Type Name Default Description
------------ ----------------- ---------- --------------------------------------------------------
OSPGroup group optional [group] object to be instanced
affine3f transform identity world-space transform for all attached geometries and
volumes, overridden by `motion.*` arrays
affine3f[] motion.transform uniformly distributed world-space transforms
vec3f[] motion.scale uniformly distributed world-space scale, overridden
by `motion.transform`
vec3f[] motion.pivot uniformly distributed world-space translation which is
applied before `motion.rotation` (i.e., the rotation
center), overridden by `motion.transform`
quatf[] motion.rotation uniformly distributed world-space quaternion rotation,
overridden by `motion.transform`
vec3f[] motion.translation uniformly distributed world-space translation,
overridden by `motion.transform`
box1f time [0, 1] time associated with first and last key in `motion.*`
arrays (for motion blur)
uint32 id -1u optional user ID, for [framebuffer] channel `OSP_FB_ID_INSTANCE`
------------ ----------------- ---------- --------------------------------------------------------
: Parameters understood by instances.
### World
Worlds are a container of scene data represented by [instances]. To
create an (empty) world call
OSPWorld ospNewWorld();
Objects are placed in the world through an array of instances. Similar
to [groups], the array of instances is optional: there is no need to
create empty arrays if there are no instances (though there will be
nothing to render).
Applications can query the world (axis-aligned) bounding box after the
world has been committed. To get this information, call
OSPBounds ospGetBounds(OSPObject);
The result is returned in the provided `OSPBounds`^[`OSPBounds` has
essentially the same layout as the `OSP_BOX3F` [`OSPDataType`][data].]
struct:
typedef struct {
float lower[3];
float upper[3];
} OSPBounds;
This call can also take `OSPGroup` and `OSPInstance` as well: all other
object types will return an empty bounding box.
Finally, Worlds can be configured with parameters for making various
feature/performance trade-offs (similar to groups).
------------- ---------------- -------- -------------------------------------
Type Name Default Description
------------- ---------------- -------- -------------------------------------
OSPInstance[] instance NULL [data] array with handles of the
[instances]
OSPLight[] light NULL [data] array with handles of the
[lights]
bool dynamicScene false tell Embree to use faster BVH build
(slower ray traversal), otherwise
optimized for faster ray traversal
(slightly slower BVH build)
bool compactMode false tell Embree to use a more compact BVH
in memory by trading ray traversal
performance
bool robustMode false tell Embree to enable more robust ray
intersection code paths (slightly
slower)
------------- ---------------- -------- -------------------------------------
: Parameters understood by worlds.
Renderers
---------
A renderer is the central object for rendering in OSPRay. Different
renderers implement different features and support different materials.
To create a new renderer of given type `type` use
OSPRenderer ospNewRenderer(const char *type);
General parameters of all renderers are
-------------- ------------------ ----------------------- -----------------------------------------
Type Name Default Description
-------------- ------------------ ----------------------- -----------------------------------------
int pixelSamples 1 samples per pixel, best results when a
power of 2
int maxPathLength 20 maximum ray recursion depth
float minContribution 0.001 sample contributions below this value
will be neglected to speedup rendering
float varianceThreshold 0 threshold for adaptive accumulation
float / backgroundColor black, background color and alpha (linear
vec3f / vec4f transparent A/RGB/RGBA), if no `map_backplate` is set
OSPTexture map_backplate optional [texture] image used as
background (use texture type `texture2d`)
OSPTexture map_maxDepth optional screen-sized float [texture]
with maximum far distance per pixel
(use texture type `texture2d`)
OSPMaterial[] material optional [data] array of [materials]
which can be indexed by a
[GeometricModel]'s `material` parameter
uint pixelFilter `OSP_PIXELFILTER_GAUSS` `OSPPixelFilterType` to select the pixel
filter used by the renderer for
antialiasing. Possible pixel filters
are listed below.
float mipMapBias 0 bias for texture MIP-mapping, balancing
between sharpness/aliasing and
blurriness due to prefiltering
-------------- ------------------ ----------------------- -----------------------------------------
: Parameters understood by all renderers.
OSPRay's renderers support a feature called adaptive accumulation, which
accelerates progressive [rendering] by stopping the rendering and
refinement of image regions that have an estimated variance below the
`varianceThreshold`. This feature requires a [framebuffer] with an
`OSP_FB_VARIANCE` channel.
Per default the background of the rendered image will be transparent
black, i.e., the alpha channel holds the opacity of the rendered
objects. This eases transparency-aware blending of the image with an
arbitrary background image by the application (via $ospray.rgb +
appBackground.rgb⋅(1-ospray.alpha)$). The parameter
`backgroundColor` or `map_backplate` can be used to already blend with a
constant background color or backplate texture, respectively, (and
alpha) during rendering.
OSPRay renderers support depth composition with images of other
renderers, for example to incorporate help geometries of a 3D UI that
were rendered with OpenGL. The screen-sized [texture] `map_maxDepth`
must have format `OSP_TEXTURE_R32F` and flag
`OSP_TEXTURE_FILTER_NEAREST`. The fetched values are used to limit the
distance of primary rays, thus objects of other renderers can hide
objects rendered by OSPRay.
OSPRay supports antialiasing in image space by using pixel filters,
which are aligned around the center of a pixel. The size $w×w$ of the
filter depends on the selected filter type. The types of supported pixel
filters are defined by the `OSPPixelFilterType` enum and can be set
using the `pixelFilter` parameter.
-------------------------------- ---------------------------------------------
Name Description
-------------------------------- ---------------------------------------------
OSP_PIXELFILTER_POINT a point filter only samples the center of the
pixel, therefore the filter width is $w = 0$
OSP_PIXELFILTER_BOX a uniform box filter with a width of $w = 1$
OSP_PIXELFILTER_GAUSS a truncated, smooth Gaussian filter with a
standard deviation of $\sigma = 0.5$ and a
filter width of $w = 3$
OSP_PIXELFILTER_MITCHELL the Mitchell-Netravali filter with a width of
$w = 4$
OSP_PIXELFILTER_BLACKMAN_HARRIS the Blackman-Harris filter with a width of
$w = 3$
-------------------------------- ---------------------------------------------
: Pixel filter types supported by OSPRay for antialiasing in image space.
OSPRay also antialiases textures with prefiltering and MIP-mapping,
which can be adjusted with parameter `mipMapBias`. For final frame
rendering with a high number of `pixelSamples` or accumulated frames
`mipMapBias` can be lowered (e.g., set to -0.5 or -2) to result in sharper
textures which are essentially anisotropically filtered. Conversely, for
preview rendering with just a single sample per pixel a higher
`mipMapBias` of 1 or 2 can reduce texture aliasing and increase
rendering speed.
### SciVis Renderer
The SciVis renderer is a fast ray tracer for scientific visualization
which supports volume rendering and ambient occlusion (AO). It is
created by passing the type string "`scivis`" to `ospNewRenderer`. In
addition to the [general parameters](#renderer) understood by all
renderers, the SciVis renderer supports the following parameters:
------ ------------------- --------- ----------------------------------
Type Name Default Description
------ ------------------- --------- ----------------------------------
bool shadows false whether to compute (hard) shadows
int aoSamples 0 number of rays per sample to
compute ambient occlusion
float aoDistance 10^20^ maximum distance to consider for
ambient occlusion
float volumeSamplingRate 1 sampling rate for volumes
bool visibleLights false whether light sources are
potentially visible (as in the
[path tracer], regarding each
light's `visible`)
------ ------------------- --------- ----------------------------------
: Special parameters understood by the SciVis renderer.
Note that the intensity (and color) of AO is deduced from an [ambient
light] in the `lights` array.^[If there are multiple ambient lights then
their contribution is added.] If `aoSamples` is zero (the default) then
ambient lights cause ambient illumination (without occlusion).
### Ambient Occlusion Renderer
This renderer supports only a subset of the features of the [SciVis
renderer] to gain performance. As the name suggest its main shading
method is ambient occlusion (AO), [lights] are *not* considered at all.
Volume rendering is supported.
The Ambient Occlusion renderer is created by passing the type string
"`ao`" to `ospNewRenderer`. In addition to the [general
parameters](#renderer) understood by all renderers the following
parameters are supported as well:
------------- ---------------------- ------------ ----------------------------
Type Name Default Description
------------- ---------------------- ------------ ----------------------------
int aoSamples 1 number of rays per sample to
compute ambient occlusion
float aoDistance 10^20^ maximum distance to consider
for ambient occlusion
float aoIntensity 1 ambient occlusion strength
float volumeSamplingRate 1 sampling rate for volumes
------------- ---------------------- ------------ ----------------------------
: Special parameters understood by the Ambient Occlusion renderer.
### Path Tracer
The path tracer supports soft shadows, indirect illumination and
realistic materials. This renderer is created by passing the type string
"`pathtracer`" to `ospNewRenderer`. In addition to the [general
parameters](#renderer) understood by all renderers the path tracer
supports the following special parameters:
------ -------------------------- -------- ----------------------------------
Type Name Default Description
------ -------------------------- -------- ----------------------------------
int lightSamples all number of random light samples
per path vertex, best results
when a power of 2; per default
all light sources are sampled
bool limitIndirectLightSamples true after the first non-specular
(i.e., diffuse and glossy) path
vertex take (at most) a single
light sample (instead of
`lightSamples` many)
int roulettePathLength 5 ray recursion depth at which to
start Russian roulette termination
int maxScatteringEvents 20 maximum number of non-specular
(i.e., diffuse and glossy) bounces
float maxContribution ∞ samples are clamped to this value
before they are accumulated into
the framebuffer
bool backgroundRefraction false allow for alpha blending even if
background is seen through
refractive objects like glass
------ -------------------------- -------- ----------------------------------
: Special parameters understood by the path tracer.
The path tracer requires that [materials] are assigned to [geometries],
otherwise surfaces are treated as completely black.
The path tracer supports [volumes](#volumes) with multiple scattering.
The scattering albedo can be specified using the [transfer function].
Extinction is assumed to be spectrally constant.
Framebuffer
-----------
The framebuffer holds the rendered 2D image (and optionally auxiliary
information associated with pixels). To create a new framebuffer object
of given size `size` (in pixels), color format, and channels use
OSPFrameBuffer ospNewFrameBuffer(int size_x, int size_y,
OSPFrameBufferFormat format = OSP_FB_SRGBA,
uint32_t frameBufferChannels = OSP_FB_COLOR);
The parameter `format` describes the format the color buffer has _on the
host_, and the format that `ospMapFrameBuffer` will eventually return.
Valid values are:
Name Description
--------------- -------------------------------------------------------------
OSP_FB_NONE framebuffer will not be mapped by the application
OSP_FB_RGBA8 8\ bit [0–255] linear component red, green, blue, alpha
OSP_FB_SRGBA 8\ bit sRGB gamma encoded color components, and linear alpha
OSP_FB_RGBA32F 32\ bit float components red, green, blue, alpha
--------------- -------------------------------------------------------------
: Supported color formats of the framebuffer that can be passed to
`ospNewFrameBuffer`, i.e., valid constants of type
`OSPFrameBufferFormat`.
The parameter `frameBufferChannels` specifies which channels the
framebuffer holds, and can be combined together by bitwise OR from the
values of `OSPFrameBufferChannel` listed in the table below.
Name Description
------------------- ----------------------------------------------------------
OSP_FB_COLOR RGB color including alpha
OSP_FB_DEPTH euclidean distance to the camera (_not_ to the image plane), as linear 32\ bit float; for multiple samples per pixel their minimum is taken
OSP_FB_ACCUM accumulation buffer for progressive refinement
OSP_FB_VARIANCE for estimation of the current noise level if OSP_FB_ACCUM is also present, see [rendering]
OSP_FB_NORMAL accumulated world-space normal of the first non-specular hit, as vec3f
OSP_FB_ALBEDO accumulated material albedo (color without illumination) at the first non-specular hit, as vec3f
OSP_FB_ID_PRIMITIVE primitive index of the first hit, as uint32
OSP_FB_ID_OBJECT geometric/volumetric model `id`, if specified, or index in [group] of first hit, as uint32
OSP_FB_ID_INSTANCE user defined [instance] `id`, if specified, or instance index of first hit, as uint32
------------------- ----------------------------------------------------------
: Framebuffer channels constants (of type `OSPFrameBufferChannel`),
naming optional information the framebuffer can store. These values
can be combined by bitwise OR when passed to `ospNewFrameBuffer`.
If a certain channel value is _not_ specified, the given buffer channel
will not be present. Note that OSPRay makes a clear distinction
between the _external_ format of the framebuffer and the internal one:
The external format is the format the user specifies in the `format`
parameter; it specifies what color format OSPRay will eventually
_return_ the framebuffer to the application (when calling
`ospMapFrameBuffer`): no matter what OSPRay uses internally, it will
simply return a 2D array of pixels of that format, with possibly all
kinds of reformatting, compression/decompression, etc., going on
in-between the generation of the _internal_ framebuffer and the mapping
of the externally visible one.
In particular, `OSP_FB_NONE` is a perfectly valid pixel format for a
framebuffer that an application will never map. For example, an
application driving a display wall may well generate an intermediate
framebuffer and eventually transfer its pixel to the individual displays
using an `OSPImageOperation` [image operation].
The application can map the given channel of a framebuffer – and thus
access the stored pixel information – via
const void *ospMapFrameBuffer(OSPFrameBuffer, OSPFrameBufferChannel = OSP_FB_COLOR);
Note that `OSP_FB_ACCUM` or `OSP_FB_VARIANCE` cannot be mapped. The
origin of the screen coordinate system in OSPRay is the lower left
corner (as in OpenGL), thus the first pixel addressed by the returned
pointer is the lower left pixel of the image.
A previously mapped channel of a framebuffer can be unmapped by passing
the received pointer `mapped` to
void ospUnmapFrameBuffer(const void *mapped, OSPFrameBuffer);
The individual channels of a framebuffer can be cleared with
void ospResetAccumulation(OSPFrameBuffer);
This function will clear *all* accumulating buffers (`OSP_FB_VARIANCE`,
`OSP_FB_NORMAL`, and `OSP_FB_ALBEDO`, if present) and resets the
accumulation counter `accumID`. It is unspecified if the existing color and
depth buffers are physically cleared when `ospResetAccumulation` is called.
If `OSP_FB_VARIANCE` is specified, an estimate of the variance of the last
accumulated frame can be queried with
float ospGetVariance(OSPFrameBuffer);
Note this value is only updated after synchronizing with `OSP_FRAME_FINISHED`,
as further described in [asynchronous rendering]. The estimated variance can
be used by the application as a quality indicator and thus to decide whether
to stop or to continue progressive rendering.
The framebuffer takes a list of pixel operations to be applied to the image
in sequence as an `OSPData`. The pixel operations will be run in the order
they are in the array.
-------------------- --------------- -----------------------------------------
Type Name Description
-------------------- --------------- -----------------------------------------
OSPImageOperation[] imageOperation ordered sequence of image operations
int targetFrames anticipated number of frames that will be
accumulated for progressive refinement,
used renderers to generate a blue noise
sampling pattern; should be a power of 2,
is always 1 without `OSP_FB_ACCUM`;
default 0 (disabled)
-------------------- --------------- -----------------------------------------
: Parameters accepted by the framebuffer.
If the total number of frames to be accumulated is known, then
`targetFrames` should be set, because then renderers can generate more
pleasing blue noise patterns. Accumulation stops when `targetFrames` is
reached.
### Image Operation
Image operations are functions that are applied to every pixel of a
frame. Examples include post-processing,
filtering, blending, tone mapping, or sending tiles to a display wall.
To create a new pixel operation of given type `type` use
OSPImageOperation ospNewImageOperation(const char *type);
#### Tone Mapper
The tone mapper is a pixel operation which implements a generic filmic tone
mapping operator. Using the default parameters it approximates the Academy
Color Encoding System (ACES). The tone mapper is created by passing the type
string "`tonemapper`" to `ospNewImageOperation`. The tone mapping curve can be
customized using the parameters listed in the table below.
------ ---------- --------- --------- -----------------------------------------
Type Name Default Filmic Description
------ ---------- --------- --------- -----------------------------------------
float exposure 1.0 1.0 amount of light per unit area
float contrast 1.6773 1.1759 contrast (toe of the curve); typically is
in [1–2]
float shoulder 0.9714 0.9746 highlight compression (shoulder of the
curve); typically is in [0.9–1]
float midIn 0.18 0.18 mid-level anchor input; default is 18%
gray
float midOut 0.18 0.18 mid-level anchor output; default is 18%
gray
float hdrMax 11.0785 6.3704 maximum HDR input that is not clipped
bool acesColor true false apply the ACES color transforms
------ ---------- --------- --------- -----------------------------------------
: Parameters accepted by the tone mapper. The column "Filmic" lists
alternative values for the popular "Uncharted 2" tone mapping curve
(note that that curve includes an exposure bias to match 18% middle
gray).
#### Denoiser
OSPRay comes with a module that adds support for Intel® Open Image
Denoise (OIDN). This is provided as an optional module as it creates an
additional project dependency at compile time. The module implements a
"`denoiser`" frame operation, which denoises the entire frame before the
frame is completed. OIDN will automatically select the fastest device,
using a GPU when available. The device selection be overridden by the
environment variable `OIDN_DEFAULT_DEVICE`, possible values are `cpu`,
`sycl`, `cuda`, `hip`, or a physical device ID
----- ------------- ----------------------------------------------------------
Type Name Description
----- ------------- ----------------------------------------------------------
uint quality `OSPDenoiserQuality` for denoiser quality, default is
`OSP_DENOISER_QUALITY_MEDIUM`: balanced
quality/performance for interactive/real-time rendering;
also allowed are:
`OSP_DENOISER_QUALITY_LOW`: high performance, for
interactive/real-time preview rendering
`OSP_DENOISER_QUALITY_HIGH`: high quality, for final frame
rendering
bool denoiseAlpha whether to denoise the alpha channel as well, default
false
----- ------------- ----------------------------------------------------------
: Parameters accepted by the denoiser.
Rendering
---------
### Asynchronous Rendering
Rendering is by default asynchronous (non-blocking), and is done by
combining a framebuffer, renderer, camera, and world.
What to render and how to render it depends on the renderer's
parameters. If the framebuffer supports accumulation (i.e., it was
created with `OSP_FB_ACCUM`) then successive calls to `ospRenderFrame`
will progressively refine the rendered image (until `targetFrames` is
reached).
To start an render task, use
OSPFuture ospRenderFrame(OSPFrameBuffer, OSPRenderer, OSPCamera, OSPWorld);
This returns an `OSPFuture` handle, which can be used to
synchronize with the application, cancel, or query for progress of the
running task. When `ospRenderFrame` is called, there is no guarantee
when the associated task will begin execution.
Progress of a running frame can be queried with the following API
function
float ospGetProgress(OSPFuture);
This returns the approximated progress of the task in [0-1].
Applications can cancel a currently running asynchronous operation via
void ospCancel(OSPFuture);
Applications can wait on the result of an asynchronous operation, or
choose to only synchronize with a specific event. To synchronize with an
`OSPFuture` use
void ospWait(OSPFuture, OSPSyncEvent = OSP_TASK_FINISHED);
The following are values which can be synchronized with the application
-------------------- --------------------------------------------------------
Name Description
-------------------- --------------------------------------------------------
OSP_NONE_FINISHED Do not wait for anything to be finished (immediately
return from `ospWait`)
OSP_WORLD_COMMITTED Wait for the world to be committed (not yet implemented)
OSP_WORLD_RENDERED Wait for the world to be rendered, but not
post-processing operations (Pixel/Tile/Frame Op)
OSP_FRAME_FINISHED Wait for all rendering operations to complete
OSP_TASK_FINISHED Wait on full completion of the task associated with
the future. The underlying task may involve one or
more of the above synchronization events
-------------------- --------------------------------------------------------
: Supported events that can be passed to `ospWait`.
Currently only rendering can be invoked asynchronously. However, future
releases of OSPRay may add more asynchronous versions of API calls (and
thus return `OSPFuture`).
Applications can query whether particular events are complete with
int ospIsReady(OSPFuture, OSPSyncEvent = OSP_TASK_FINISHED);
As the given running task runs (as tracked by the `OSPFuture`),
applications can query a boolean [0, 1] result if the passed event has
been completed.
Applications can query how long an async task ran with
float ospGetTaskDuration(OSPFuture);
This returns the wall clock execution time of the task in seconds. If the task
is still running, this will block until the task is completed. This is useful
for applications to query exactly how long an asynchronous task executed without
the overhead of measuring both task execution + synchronization by the calling
application.
### Synchronous Rendering
For convenience in certain use cases, `ospray_util.h` provides a
synchronous version of `ospRenderFrame`:
float ospRenderFrameBlocking(OSPFrameBuffer, OSPRenderer, OSPCamera, OSPWorld);
This version is the equivalent of:
ospRenderFrame
ospWait(f, OSP_TASK_FINISHED)
return ospGetVariance(fb)
This version is closest to `ospRenderFrame` from OSPRay v1.x.
### Rendering and ospCommit
The use of either `ospRenderFrame` or `ospRenderFrameBlocking` requires
that all objects in the scene being rendered have been committed before
rendering occurs. If a call to `ospCommit` happens while a frame is
rendered, the result is undefined behavior and should be avoided.
### Picking
To get the world-space position of the geometry (if any) seen at [0–1]
normalized screen-space pixel coordinates `screenPos_x` and
`screenPos_y` use
void ospPick(OSPPickResult *,
OSPFrameBuffer,
OSPRenderer,
OSPCamera,
OSPWorld,
float screenPos_x,
float screenPos_y);
The result is returned in the provided `OSPPickResult` struct:
typedef struct {
int hasHit;
float worldPosition[3];
OSPInstance instance;
OSPGeometricModel model;
uint32_t primID;
} OSPPickResult;
Note that `ospPick` considers exactly the same camera of the given
renderer that is used to render an image, thus matching results can be
expected. If the camera supports depth of field then the center of the
lens and thus the center of the circle of confusion is used for picking.
Note that the caller needs to `ospRelease` the `instance` and `model`
handles of `OSPPickResult` once the information is not needed anymore.
Modules and Devices
===================
CPU
----
The CPU module is implicitly loaded and the `cpu` device is
automatically used if no other options are specified.
GPU (Beta)
---------
To use the GPU for rendering load the `gpu` module and select the `gpu`
device:
```sh
./ospExamples --osp:load-modules=gpu --osp:device=gpu
```
or via explicit device creation by the application:
ospLoadModule("gpu");
OSPDevice dev = ospNewDevice("gpu");
ospDeviceCommit(dev);
ospSetCurrentDevice(dev);
Type Name Description
-------- ------------- --------------------------------
void\ * syclContext SYCL context
void\ * syclDevice SYCL device
-------- ------------- --------------------------------
: Parameters specific to the `gpu` device.
Applications can set their SYCL context and device to share device
memory with OSPRay or to control which device should be used
(e.g., in case multiple GPUs are present). If neither parameter is set,
the `gpu` device will automatically create a context internally
and select a GPU (that selection can be influenced via environment
variable `ONEAPI_DEVICE_SELECTOR`, see [Intel oneAPI DPC++ Compiler
documentation](https://intel.github.io/llvm-docs/EnvironmentVariables.html#oneapi-device-selector)).
Compile times for just in time compilation (JIT compilation) can be
large. To resolve this issue we recommend enabling persistent JIT
compilation caching inside your application before the SYCL device is
created, by setting environment variables `SYCL_CACHE_PERSISTENT=1` (and
optionally `SYCL_CACHE_DIR=<path>` to some proper directory where the
JIT cache should get stored).
To reduce GPU memory allocation overhead when rendering scenes with many
objects (geometries, instances, etc.), memory pooling should be enabled
by setting the environment variable
`SYCL_PI_LEVEL_ZERO_USM_ALLOCATOR="1;0;shared:1M,0,2M"`.
See [Intel oneAPI DPC++ Compiler
documentation](https://intel.github.io/llvm-docs/EnvironmentVariables.html#debugging-variables-for-level-zero-plugin)
for more details.
### Known Issues {-}
The following features are not implemented yet or are not working
correctly on the GPU device:
- Multiple volumes in the scene
- Clipping
- Motion blur
- Subdivision surfaces
- Progress reporting via `ospGetProgress` or canceling the frame via `ospCancel`
- Picking via `ospPick`
- Adaptive accumulation via `OSP_FB_VARIANCE` and `varianceThreshold`
- Framebuffer channels `OSP_FB_ID_*` (id buffers)
- Experimental support for shared device-only data, works only for
`structuredRegular` volume
There will be some delay on start-up as the kernel code is JIT compiled
for the device, and similar pauses when changing the scene
configuration, because the kernel specialized and re-compiled.
For some combination of compiler, GPU driver and scene the rendered
images might show artifacts (e.g., vertical lines or small blocks).
Distributed Rendering with MPI
------------------------------
The purpose of OSPRay's MPI modules is to provide distributed
rendering capabilities for OSPRay. The modules enables image- and
data-parallel rendering across HPC clusters using MPI, allowing
applications to transparently distribute rendering work, or to render
data sets which are too large to fit in memory on a single machine.
OSPRay provides multiple MPI modules that expose different distributed
rendering capabilities. The `mpi_offload` module provides image-parallel
rendering through the `mpiOffload` device; it enables OSPRay
applications written for local rendering to be replicated across
multiple nodes to distribute the rendering work without code changes.
And the `mpi_distributed_cpu` and `mpi_distributed_gpu` modules provides
data-parallel rendering through the `mpiDistributed` device, which
allows MPI distributed applications to use OSPRay for distributed
rendering. Each rank using the `mpiDistributed` device can render an
independent piece of a global data set, or perform hybrid rendering
where ranks partially or completely share data.
The `mpiDistributed` device's image-parallel rendering support can be used to
accelerate data loading for image-parallel applications, where all ranks load
the same data from a shared disk and then perform image-parallel rendering
on the replicated data, as if the `mpiOffload` device where being used.
### MPI Offload Rendering
The `mpiOffload` device can be used to distribute image rendering tasks
across a cluster without requiring modifications to the application
itself. Existing applications using OSPRay for local rendering simply be
passed command line arguments to load the module and indicate that the
`mpiOffload` device should be used for image-parallel rendering. To load
the module, pass `--osp:load-modules=mpi_offload`, to select the
MPIOffloadDevice, pass `--osp:device=mpiOffload`. For example, the
`ospExamples` application can be run as:
```sh
mpirun -n <N> ./ospExamples --osp:load-modules=mpi_offload --osp:device=mpiOffload
```
and will automatically distribute the image rendering tasks among the
corresponding `N` nodes. Note that in this configuration rank 0 will act
as a master/application rank, and will run the user application code but
not perform rendering locally. Thus, a minimum of 2 ranks are required,
one master to run the application and one worker to perform the
rendering. Running with 3 ranks for example would now distribute half
the image rendering work to rank 1 and half to rank 2.
If more control is required over the placement of ranks to nodes, or you
want to run a worker rank on the master node as well you can run the
application and the `ospray_mpi_worker` program through MPI's MPMD mode.
The `ospray_mpi_worker` will load the MPI module and select the offload
device by default.
```sh
mpirun -n 1 ./ospExamples --osp:load-modules=mpi_offload --osp:device=mpiOffload \
: -n <N> ./ospray_mpi_worker
```
If initializing the `mpiOffload` device manually, or passing parameters
through the command line, the following parameters can be set:
-------- ------------------------ --------- ---------------------------------
Type Name Default Description
-------- ------------------------ --------- ---------------------------------
string mpiMode mpi The mode to communicate with the
worker ranks. `mpi` will assume
you are launching the application
and workers in the same mpi
command (or split launch
command). `mpi` is the only
supported mode
uint maxCommandBufferEntries 8192 Set the max number of commands to
buffer before submitting the
command buffer to the workers
uint commandBufferSize 512\ MiB Set the max command buffer size
to allow. Units are in MiB. Max
size is 1.8\ GiB
uint maxInlineDataSize 32\ MiB Set the max size of an OSPData
which can be inline'd into the
command buffer instead of being
sent separately. Max size is half
the commandBufferSize. Units are
in MiB
-------- ------------------------ --------- ---------------------------------
: Parameters specific to the `mpiOffload` device.
The `maxCommandBufferEntries`, `commandBufferSize`, and
`maxInlineDataSize` can also be set via the environment variables:
`OSPRAY_MPI_MAX_COMMAND_BUFFER_ENTRIES`,
`OSPRAY_MPI_COMMAND_BUFFER_SIZE`, and `OSPRAY_MPI_MAX_INLINE_DATA_SIZE`,
respectively.
The `mpiOffload` device uses a dynamic load balancer by default. If you
wish to use a static load balancer you can do so by setting the
`OSPRAY_STATIC_BALANCER` environment variable to 1.
For the worker ranks to create GPU devices instead of the default CPU
devices set the environment variable `OSPRAY_MPI_DISTRIBUTED_GPU`, e.g.,
```sh
export OSPRAY_MPI_DISTRIBUTED_GPU=1
```
or
```sh
mpiexec -genv OSPRAY_MPI_DISTRIBUTED_GPU 1 \
-n 1 ./ospExamples --osp:load-modules=mpi_offload --osp:device=mpiOffload \
: -n 2 ./ospray_mpi_worker
```
The `mpiOffload` device does not support multiple init/shutdown cycles.
Thus, to run `ospBenchmark` for this device make sure to exclude the
init/shutdown test by passing `--benchmark_filter=-ospInit_ospShutdown`
through the command line.
### MPI Distributed Rendering
While MPI Offload rendering is used to transparently distribute
rendering work without requiring modification to the application, MPI
Distributed rendering is targeted at use of OSPRay within MPI-parallel
applications. The MPI distributed device can be selected by loading the
`mpi_distributed_cpu` module for CPU rendering or `mpi_distributed_gpu`
for GPU rendering, and manually creating and using an instance of the
`mpiDistributed` device, for example:
ospLoadModule("mpi_distributed_cpu");
OSPDevice mpiDevice = ospNewDevice("mpiDistributed");
ospDeviceCommit(mpiDevice);
ospSetCurrentDevice(mpiDevice);
Your application can either initialize MPI before-hand, ensuring that
`MPI_THREAD_SERIALIZED` or higher is supported, or allow the device to
initialize MPI on commit. Thread multiple support is required if your
application will make MPI calls while rendering asynchronously with
OSPRay. When using the distributed device each rank can specify
independent local data using the OSPRay API, as if rendering locally.
However, when calling `ospRenderFrameAsync` the ranks will work
collectively to render the data. The distributed device supports both
image-parallel, where the data is replicated, and data-parallel, where
the data is distributed, rendering modes. The `mpiDistributed` device
will by default use each rank in `MPI_COMM_WORLD` as a render worker;
however, it can also take a specific MPI communicator to use as the
world communicator. Only those ranks in the specified communicator will
participate in rendering.
-------- ------------------ ---------------- --------------------------------
Type Name Default Description
-------- ------------------ ---------------- --------------------------------
void\ * worldCommunicator MPI_COMM_WORLD The MPI communicator which the
OSPRay workers should treat as
their world
-------- ------------------ ---------------- --------------------------------
: Parameters specific to the `mpiDistributed` device.
-------- ------- --------- -----------------------------------------------
Type Name Default Description
-------- ------- --------- -----------------------------------------------
box3f[] region NULL A list of bounding boxes which bound the owned
local data to be rendered by the rank
-------- ------- --------- -----------------------------------------------
: Parameters specific to the distributed `OSPWorld`.
------ ------------------- --------- ------------------------------------------------
Type Name Default Description
------ ------------------- --------- ------------------------------------------------
int aoSamples 0 The number of AO samples to take per-pixel
float aoDistance 10^20^ The AO ray length to use. Note that if the AO
ray would have crossed a rank boundary and ghost
geometry is not available, there will be visible
artifacts in the shading
float volumeSamplingRate 1 sampling rate for volumes
------ ------------------- --------- ------------------------------------------------
: Parameters specific to the `mpiRaycast` renderer.
#### Image Parallel Rendering in the MPI Distributed Device
If all ranks specify exactly the same data, the distributed device can
be used for image-parallel rendering. This works identical to the
offload device, except that the MPI-aware application is able to load
data in parallel on each rank rather than loading on the master and
shipping data out to the workers. When a parallel file system is
available, this can improve data load times. Image-parallel rendering is
selected by specifying the same data on each rank, and using any of the
existing local renderers (e.g., `scivis`, `pathtracer`). See
[ospMPIDistribTutorialReplicated](https://github.com/ospray/ospray/blob/master/modules/mpi/tutorials/ospMPIDistribTutorialReplicated.cpp)
for an example.
#### Data Parallel Rendering in the MPI Distributed Device
The MPI Distributed device also supports data-parallel rendering with
sort-last compositing. Each rank can specify a different piece of data,
as long as the bounding boxes of each rank's data are non-overlapping.
The rest of the scene setup is similar to local rendering; however, for
distributed rendering only the `mpiRaycast` renderer is supported. This
renderer implements a subset of the `scivis` rendering features which
are suitable for implementation in a distributed environment.
By default the aggregate bounding box of the instances in the local
world will be used as the bounds of that rank's data. However, when
using ghost zones for volume interpolation, geometry or ambient
occlusion, each rank's data can overlap. To clip these non-owned overlap
regions out a set of regions (the `region` parameter) can pass as a
parameter to the `OSPWorld` being rendered. Each rank can specify one or
more non-overlapping `box3f`'s which bound the portions of its local
data which it is responsible for rendering. See the
[ospMPIDistribTutorialVolume](https://github.com/ospray/ospray/blob/master/modules/mpi/tutorials/ospMPIDistribTutorialVolume.cpp)
for an example.
Finally, the MPI distributed device also supports hybrid-parallel
rendering, where multiple ranks can share a single piece of data. For
each shared piece of data the rendering work will be assigned
image-parallel among the ranks. Partially-shared regions are determined
by finding those ranks specifying data with the same bounds (matching
regions) and merging them. See the
[ospMPIDistribTutorialPartialRepl](https://github.com/ospray/ospray/blob/master/modules/mpi/tutorials/ospMPIDistribTutorialPartialRepl.cpp)
for an example.
#### Picking on Distributed Data in the MPI Distributed Device {-}
Calling `ospPick` in the distributed device will find and return the
closest global object at the screen position on the rank that owns that
object. The other ranks will report no hit.
Picking in the distributed device takes into account data clipping
applied through the `regions` parameter to avoid picking ghost data.
### Interaction with User Modules
The MPI Offload rendering mode trivially supports user modules, with the
caveat that attempting to share data directly with the application
(e.g., passing a `void *` or other tricks to the module) will not work in
a distributed environment. Instead, use the `ospNewSharedData` API to
share data from the application with OSPRay, which will in turn be
copied over the network to the workers.
The MPI Distributed device also supports user modules, as all that is
required for compositing the distributed data are the bounds of each
rank's local data.
MultiDevice
-----------
The multidevice module is an experimental OSPRay device type that renders
images by delegating off pixel tiles to a number of internal delegate OSPRay
devices.
If you wish to try it set the `OSPRAY_NUM_SUBDEVICES` environmental variable to
the number of subdevices you want to create and tell OSPRay to both load the
`multidevice_cpu` extension and create a multidevice for rendering instead of the
default CPU device.
One example in a bash like shell is as follows:
```sh
OSPRAY_NUM_SUBDEVICES=6 ./ospTutorial --osp:load-modules=multidevice_cpu --osp:device=multidevice
```
Note that the multidevice currently does not support
`OSPImageOperation`s for denoising nor tone mapping.
|