1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
// Copyright 2009 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "rkcommon/math/box.ih"
// Ray intersection structures //////////////////////////////////////////////
OSPRAY_BEGIN_ISPC_NAMESPACE
struct Hit
{
bool hit;
float t;
vec3f N;
float u;
};
struct Intersections
{
Hit entry;
Hit exit;
};
// Ray intersection helpers ///////////////////////////////////////////////////
// robust ray-sphere intersection
inline Intersections intersectSphere(const vec3f &rayOrg,
const vec3f &rayDir,
const uniform vec3f ¢er,
const uniform float radius)
{
Intersections isect;
isect.entry.hit = false;
isect.exit.hit = false;
isect.entry.t = inf;
isect.exit.t = -(float)inf;
const vec3f d = rayDir;
const float rd2 = 1.0f / dot(d, d); // 1/a
const vec3f CO = center - rayOrg;
// transformation to avoid missing a small sphere which is far away:
// the standard c=CO^2-r^2 would quickly loose term r due to float arithmetic
const float projCO = dot(CO, d) * rd2; // in ray-space
const vec3f perp = CO - projCO * d;
const float l2 = dot(perp, perp);
const uniform float r2 = sqr(radius);
if (l2 > r2)
return isect;
float td = sqrt((r2 - l2) * rd2);
isect.entry.hit = true;
isect.exit.hit = true;
isect.entry.t = projCO - td;
isect.exit.t = projCO + td;
// above solutions are problematic if rays starts close to the sphere
// (due to catastrophic cancellation, because then |projCO| ~ td)
// the usual recommendation is to choose the one solution with same sign:
// const float t1 = projCO + floatbits(signbits(projCO)|intbits(td));
// and compute the other solution via t1*t2=c/a:
// const float t2 = (dot(CO, CO) - r2) / t1 * rd2;
// this is more precise, but still problematic in particular for large
// spheres, because |CO| ~ r; slightly better alternative, but costly sqrt:
// const float f = sqrt(dot(CO, CO));
// const float t2 = (f - radius) * (f + radius) / t1 * rd2;
// the only variant I found that has high enough precision to avoid
// self-intersections of 2ndary rays is to (re-)compute most terms (CO, dot,
// r2, t2) with doubles; large spheres are a rare usecase for OSPRay, thus we
// use instead as a workaround an additional, radius-dependent epsilon
// cannot easily be moved to postIntersect
// we need hit in object space, in postIntersect it is in world-space
isect.entry.N = -td * d - perp;
isect.exit.N = td * d - perp;
return isect;
}
inline Intersections intersectCylinder(const vec3f &rayOrg,
const vec3f &rayDir,
const uniform vec3f &v0,
const uniform vec3f &v1,
const uniform float radius)
{
Intersections isect;
isect.entry.hit = false;
isect.exit.hit = false;
isect.entry.t = inf;
isect.exit.t = -(float)inf;
const uniform vec3f cZ = v1 - v0;
const vec3f q = rayOrg - v0;
const uniform float z2 = dot(cZ, cZ);
const float d = dot(cZ, rayDir);
const float c = dot(cZ, q);
const float A = z2 - sqr(d);
const float B = z2 * dot(q, rayDir) - c * d;
const float C = z2 * dot(q, q) - sqr(c) - sqr(radius) * z2;
float radical = B * B - A * C;
if (radical < 0.f) {
return isect;
}
radical = sqrt(radical);
const float tin = (-B - radical) / A;
const float tout = (-B + radical) / A;
// first hit
const float yin = c + tin * d;
if (yin > 0.f && yin < z2) {
// body hit
isect.entry.hit = true;
isect.entry.t = tin;
isect.entry.u = yin * rcp(z2);
isect.entry.N = (q + tin * rayDir - cZ * yin * rcp(z2)) * rcp(radius);
} else {
const float tcapin = (((yin < 0.f) ? 0.f : z2) - c) / d;
if (abs(B + A * tcapin) < radical) {
// cap hit
isect.entry.hit = false;
isect.entry.t = tin;
isect.entry.u = (yin < 0.f) ? 0.f : 1.f;
const float us = signbits(yin) ? -1.f : 1.f;
isect.entry.N = cZ * us / z2;
}
}
// second hit
const float yout = c + tout * d;
if (yout > 0.f && yout < z2) {
// body hit
isect.exit.hit = true;
isect.exit.t = tout;
isect.exit.u = yout * rcp(z2);
isect.exit.N = (q + tout * rayDir - cZ * yout * rcp(z2)) * rcp(radius);
} else {
const float tcapout = (((yout < 0.f) ? 0.f : z2) - c) / d;
if (abs(B + A * tcapout) < radical) {
// cap hit
isect.exit.hit = false;
isect.exit.t = tout;
isect.exit.u = (yout < 0.f) ? 0.f : 1.f;
const float us = signbits(yout) ? -1.f : 1.f;
isect.exit.N = cZ * us / z2;
}
}
return isect;
}
inline Intersections intersectCapsule(const vec3f &rayOrg,
const vec3f &rayDir,
const uniform vec3f &v0,
const uniform vec3f &v1,
const uniform float radius)
{
Intersections isect_pipe = intersectCylinder(rayOrg, rayDir, v0, v1, radius);
const Intersections isect_sph1 = intersectSphere(rayOrg, rayDir, v0, radius);
const Intersections isect_sph2 = intersectSphere(rayOrg, rayDir, v1, radius);
const float t_in =
min(min(isect_sph1.entry.t, isect_sph2.entry.t), isect_pipe.entry.t);
const float t_out =
max(max(isect_sph1.exit.t, isect_sph2.exit.t), isect_pipe.exit.t);
isect_pipe.entry.hit |= isect_sph1.entry.hit | isect_sph2.entry.hit;
isect_pipe.entry.t = t_in;
isect_pipe.exit.hit |= isect_sph1.exit.hit | isect_sph2.exit.hit;
isect_pipe.exit.t = t_out;
if (isect_sph1.entry.t == t_in) {
isect_pipe.entry.u = 0.f;
isect_pipe.entry.N = isect_sph1.entry.N;
} else if (isect_sph2.entry.t == t_in) {
isect_pipe.entry.u = 1.f;
isect_pipe.entry.N = isect_sph2.entry.N;
}
if (isect_sph1.exit.t == t_out) {
isect_pipe.exit.u = 0.f;
isect_pipe.exit.N = isect_sph1.exit.N;
} else if (isect_sph2.exit.t == t_out) {
isect_pipe.exit.u = 1.f;
isect_pipe.exit.N = isect_sph2.exit.N;
}
return isect_pipe;
}
inline Intersections intersectBox(
const vec3f &rayOrg, const vec3f &rayDir, const uniform box3f &box)
{
Intersections isect;
const vec3f mins = (box.lower - rayOrg) * rcp_safe(rayDir);
const vec3f maxs = (box.upper - rayOrg) * rcp_safe(rayDir);
const vec3f nears = min(mins, maxs);
const vec3f fars = max(mins, maxs);
isect.entry.t = reduce_max(nears);
if (isect.entry.t == nears.x)
isect.entry.N = make_vec3f(rayDir.x > 0.0f ? -1.0f : 1.0f, 0.0f, 0.0f);
else if (isect.entry.t == nears.y)
isect.entry.N = make_vec3f(0.0f, rayDir.y > 0.0f ? -1.0f : 1.0f, 0.0f);
else
isect.entry.N = make_vec3f(0.0f, 0.0f, rayDir.z > 0.0f ? -1.0f : 1.0f);
isect.exit.t = reduce_min(fars);
if (isect.exit.t == fars.x)
isect.exit.N = make_vec3f(rayDir.x > 0.0f ? 1.0f : -1.0f, 0.0f, 0.0f);
else if (isect.exit.t == fars.y)
isect.exit.N = make_vec3f(0.0f, rayDir.y > 0.0f ? 1.0f : -1.0f, 0.0f);
else
isect.exit.N = make_vec3f(0.0f, 0.0f, rayDir.z > 0.0f ? 1.0f : -1.0f);
isect.entry.hit = isect.entry.t < isect.exit.t;
isect.exit.hit = isect.entry.hit;
return isect;
}
inline Hit intersectPlane(
const vec3f &rayOrg, const vec3f &rayDir, const uniform vec4f &plane)
{
Hit hit;
hit.hit = false;
const uniform vec3f normal = make_vec3f(plane);
const float DdN = dot(rayDir, normal);
hit.hit = DdN != 0.0f;
hit.N = normal;
hit.t = (plane.w - dot(rayOrg, normal)) * rcpf(DdN);
return hit;
}
OSPRAY_END_ISPC_NAMESPACE
|