File: PointLight.ispc

package info (click to toggle)
ospray 3.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,048 kB
  • sloc: cpp: 80,569; ansic: 951; sh: 805; makefile: 170; python: 69
file content (221 lines) | stat: -rw-r--r-- 6,522 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
// Copyright 2009 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "IntensityDistribution.ih"
#include "common/Instance.ih"
#include "common/Intersect.ih"
#include "common/Ray.ih"
#include "math/sampling.ih"
#include "rkcommon/math/LinearSpace.ih"
// c++ shared
#include "PointLightShared.h"

// Implementation
//////////////////////////////////////////////////////////////////////////////
OSPRAY_BEGIN_ISPC_NAMESPACE

inline void Transform(const PointLight *uniform self,
    const uniform affine3f &xfm,
    uniform PointLightDynamic &dyn)
{
  dyn.position = xfmPoint(xfm, self->pre.position);

  if (self->intensityDistribution.lid) {
    dyn.direction = normalize(xfmVector(xfm, self->pre.direction));
    dyn.c90 = normalize(cross(xfmVector(xfm, self->pre.c0), dyn.direction));
    dyn.c0 = cross(dyn.direction, dyn.c90);
  }
}

export void PointLight_Transform(
    const void *uniform self, const void *uniform xfm, void *uniform dyn)
{
  Transform((PointLight * uniform) self,
      *((affine3f * uniform) xfm),
      *((PointLightDynamic * uniform) dyn));
}

inline Light_SampleRes Sample(const PointLight *uniform self,
    const uniform PointLightDynamic &dyn,
    const DifferentialGeometry &dg,
    const vec2f &s)
{
  Light_SampleRes res;

  // extant light vector from the hit point
  const vec3f dir = dyn.position - dg.P;
  const float dist2 = dot(dir, dir);
  const float invdist = rsqrt(dist2);

  // normalized light vector
  res.dir = dir * invdist;
  res.dist = dist2 * invdist;

  res.pdf = inf; // per default we always take this sample

  const float sinTheta = self->radius * invdist;

  if ((self->radius > 0.f) & (sinTheta > 0.005f)) {
    // sample surface of sphere as seen by hit point -> cone of directions
    // for very small cones treat as point light, because float precision is not
    // good enough
    if (sinTheta < 1.f) {
      const float cosTheta = sqrt(1.f - sinTheta * sinTheta);
      const vec3f localDir = uniformSampleCone(cosTheta, s);
      res.dir = frame(res.dir) * localDir;
      res.pdf = uniformSampleConePDF(cosTheta);
      const float c = localDir.z;
      res.dist =
          c * res.dist - sqrt_safe(sqr(self->radius) - (1.f - c * c) * dist2);
      // note the sampling PDF is already in solid angle therefore, we do not
      // need to divide it by the squared distance
      res.weight = self->radiance / res.pdf;
    } else {
      // emit only from the surface to the outside
      res.weight = make_vec3f(0.f);
    }
  } else {
    // convert from intensity to radiance by attenuating by distance^2
    res.weight = self->intensity * sqr(invdist);
  }

  if (self->intensityDistribution.lid) {
    const float cosd = -dot(dyn.direction, res.dir);
    res.weight = res.weight
        * IntensityDistribution_eval(
            &self->intensityDistribution, dyn.c0, dyn.c90, cosd, res.dir);
  }

  return res;
}

SYCL_EXTERNAL Light_SampleRes PointLight_sample(const Light *uniform super,
    const DifferentialGeometry &dg,
    const vec2f &s,
    const float,
    const uniform FeatureFlagsHandler &)
{
  const PointLight *uniform self = (PointLight * uniform) super;
  assert(self);
  return Sample(self, self->pre, dg, s);
}

SYCL_EXTERNAL Light_SampleRes PointLight_sample_instanced(
    const Light *uniform super,
    const DifferentialGeometry &dg,
    const vec2f &s,
    const float time,
    const uniform FeatureFlagsHandler &)
{
  const PointLight *uniform self = (PointLight * uniform) super;
  assert(self);

  const Instance *uniform instance = self->super.instance;
  assert(instance);

  Light_SampleRes res;
  foreach_unique (utime in time) {
    const uniform affine3f xfm = Instance_getTransform(instance, utime);
    uniform PointLightDynamic dyn;
    Transform(self, xfm, dyn);
    res = Sample(self, dyn, dg, s);
  }
  return res;
}

inline Light_EvalRes Eval(const PointLight *uniform self,
    const uniform PointLightDynamic &dyn,
    const DifferentialGeometry &dg,
    const vec3f &dir,
    const float minDist,
    const float maxDist)
{
  Light_EvalRes res;
  res.radiance = make_vec3f(0.f);

  const vec3f A = dyn.position - dg.P;
  const float centerDist2 = dot(A, A);
  const float sinTheta2 = sqr(self->radius) * rcp(centerDist2);

  if (self->radius > 0.f && sqrt(sinTheta2) > 0.005f) {
    const Intersections isect =
        intersectSphere(dg.P, dir, dyn.position, self->radius);

    if (isect.entry.hit && isect.entry.t > minDist && isect.entry.t < maxDist) {
      const float cosTheta = sqrt(1.f - sinTheta2);
      res.pdf = uniformSampleConePDF(cosTheta);
      res.radiance = self->radiance;
      if (self->intensityDistribution.lid) {
        const float cosAngle = -dot(dyn.direction, dir);
        res.radiance = res.radiance
            * IntensityDistribution_eval(
                &self->intensityDistribution, dyn.c0, dyn.c90, cosAngle, dir);
      }
    }
  }
  return res;
}

SYCL_EXTERNAL Light_EvalRes PointLight_eval(const Light *uniform super,
    const DifferentialGeometry &dg,
    const vec3f &dir,
    const float minDist,
    const float maxDist,
    const float)
{
  const PointLight *uniform self = (PointLight * uniform) super;
  assert(self);
  return Eval(self, self->pre, dg, dir, minDist, maxDist);
}

SYCL_EXTERNAL Light_EvalRes PointLight_eval_instanced(
    const Light *uniform super,
    const DifferentialGeometry &dg,
    const vec3f &dir,
    const float minDist,
    const float maxDist,
    const float time)
{
  const PointLight *uniform self = (PointLight * uniform) super;
  assert(self);

  const Instance *uniform instance = self->super.instance;
  assert(instance);

  Light_EvalRes res;
  foreach_unique (utime in time) {
    const uniform affine3f xfm = Instance_getTransform(instance, utime);
    uniform PointLightDynamic dyn;
    Transform(self, xfm, dyn);
    res = Eval(self, dyn, dg, dir, minDist, maxDist);
  }
  return res;
}

// Exports (called from C++)
//////////////////////////////////////////////////////////////////////////////

export void *uniform PointLight_sample_addr()
{
  return (void *uniform)PointLight_sample;
}

#ifndef OSPRAY_TARGET_SYCL
export void *uniform PointLight_sample_instanced_addr()
{
  return (void *uniform)PointLight_sample_instanced;
}
#endif

export void *uniform PointLight_eval_addr()
{
  return (void *uniform)PointLight_eval;
}

#ifndef OSPRAY_TARGET_SYCL
export void *uniform PointLight_eval_instanced_addr()
{
  return (void *uniform)PointLight_eval_instanced;
}
#endif
OSPRAY_END_ISPC_NAMESPACE