1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
// Copyright 2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
// ospray
#include "SunSkyLight.h"
#include "texture/Texture2D.h"
#ifndef OSPRAY_TARGET_SYCL
// ispc exports
#include "lights/HDRILight_ispc.h"
#else
namespace ispc {
void HDRILight_initDistribution(const void *map, void *distribution);
}
#endif
// ispc shared
#include "DirectionalLightShared.h"
#include "HDRILightShared.h"
namespace ospray {
SunSkyLight::SunSkyLight(api::ISPCDevice &device)
: Light(device, FFO_LIGHT_HDRI | FFO_LIGHT_DIRECTIONAL)
{
static const int skyResolution = 512;
this->skySize = vec2i(skyResolution, skyResolution / 2);
this->skyImage = devicert::make_buffer_shared_unique<vec3f>(
getISPCDevice().getDRTDevice(), skySize.product());
static auto format = static_cast<OSPTextureFormat>(OSP_TEXTURE_RGB32F);
static auto filter = static_cast<OSPTextureFilter>(OSP_TEXTURE_FILTER_LINEAR);
map = new Texture2D(getISPCDevice());
map->refDec();
void *data = skyImage->data();
map->getSh()->set(skySize,
&data,
0,
format,
filter,
vec2ui(OSP_TEXTURE_WRAP_REPEAT, OSP_TEXTURE_WRAP_CLAMP_TO_EDGE));
}
ispc::Light *SunSkyLight::createSh(
uint32_t index, const ispc::Instance *instance) const
{
switch (index) {
case 0: {
ispc::HDRILight *sh =
StructSharedCreate<ispc::HDRILight>(getISPCDevice().getDRTDevice());
sh->set(visible,
instance,
coloredIntensity,
frame,
map->getSh(),
distribution->getSh());
return &sh->super;
}
case 1: {
ispc::DirectionalLight *sh = StructSharedCreate<ispc::DirectionalLight>(
getISPCDevice().getDRTDevice());
sh->set(visible, instance, direction, solarIrradiance, cosAngle);
return &sh->super;
}
default:
assert(false && "Incorrect SunSky sublight index");
}
return nullptr;
}
std::string SunSkyLight::toString() const
{
return "ospray::SunSkyLight";
}
void SunSkyLight::commit()
{
Light::commit();
const float lambdaMin = 320.0f;
const float lambdaMax = 720.0f;
const vec3f up = normalize(getParam<vec3f>("up", vec3f(0.f, 1.f, 0.f)));
direction = -normalize(getParam<vec3f>("direction", vec3f(0.f, -1.f, 0.f)));
const float albedo = clamp(getParam<float>("albedo", 0.3f), 0.1f, 1.f);
const float turbidity = clamp(getParam<float>("turbidity", 3.f), 1.f, 10.f);
const float horizon =
clamp(getParam<float>("horizonExtension", 0.01f), 0.0f, 1.f);
const float sunTheta = dot(up, direction);
queryIntensityQuantityType(OSP_INTENSITY_QUANTITY_SCALE);
processIntensityQuantityType();
frame.vz = up;
if (std::abs(sunTheta) > 0.99f) {
const vec3f dx0 = vec3f(0.0f, up.z, -up.y);
const vec3f dx1 = vec3f(-up.z, 0.0f, up.x);
frame.vx = normalize(std::abs(up.x) < std::abs(up.y) ? dx0 : dx1);
frame.vy = cross(up, frame.vx);
} else {
frame.vy = normalize(cross(-direction, frame.vz));
frame.vx = cross(frame.vy, frame.vz);
}
// clamp sun to horizon
if (sunTheta < 0)
direction = frame.vx;
// sun doesn't go beneath the horizon as theta clamped to pi/2
const float sunThetaMax = min(std::acos(sunTheta), (float)pi * 0.999f / 2.0f);
const float sunPhi = pi;
const float sunElevation = (float)pi / 2.0f - sunThetaMax;
ArHosekSkyModelState *spectralModel =
arhosekskymodelstate_alloc_init(sunElevation, turbidity, albedo);
// angular diameter of the sun in degrees
// using this value produces matching solar irradiance results from the model
// and directional light
const float angularDiameter = 0.53;
solarIrradiance = zero;
// calculate solar radiance
for (int i = 0; i < cieSize; ++i) {
if (cieLambda[i] >= lambdaMin && cieLambda[i] <= lambdaMax) {
float r = arhosekskymodel_solar_radiance_internal2(
spectralModel, cieLambda[i], sunElevation, 1);
solarIrradiance += r * cieXyz(i);
}
}
arhosekskymodelstate_free(spectralModel);
cosAngle = std::cos(deg2rad(0.5f * angularDiameter));
const float rcpPdf = 2 * (float)pi * (1 - cosAngle);
// convert solar radiance to solar irradiance
solarIrradiance =
xyzToRgb(solarIrradiance) * rcpPdf * intensityScale * coloredIntensity;
ArHosekSkyModelState *rgbModel =
arhosek_rgb_skymodelstate_alloc_init(turbidity, albedo, sunElevation);
tasking::parallel_for(skySize.y, [&](int y) {
for (int x = 0; x < skySize.x; x++) {
float theta = (y + 0.5) / skySize.y * float(pi);
const size_t index = skySize.x * y + x;
// const size_t index = skySize.x * y + x * 3;
vec3f skyRadiance = zero;
const float maxTheta = 0.999 * float(pi) / 2.0;
const float maxThetaHorizon = (horizon + 1.0) * float(pi) / 2.0;
if (theta <= maxThetaHorizon) {
float shadow = (horizon > 0.f)
? float(
clamp((maxThetaHorizon - theta) / (maxThetaHorizon - maxTheta),
0.f,
1.f))
: 1.f;
theta = min(theta, maxTheta);
float phi = ((x + 0.5) / skySize.x - 0.5) * (2.0 * (float)pi);
float cosGamma = cos(theta) * cos(sunThetaMax)
+ sin(theta) * sin(sunThetaMax) * cos(phi - sunPhi);
float gamma = std::acos(clamp(cosGamma, -1.f, 1.f));
float rgbData[3];
for (int i = 0; i < 3; ++i) {
rgbData[i] =
arhosek_tristim_skymodel_radiance(rgbModel, theta, gamma, i);
}
skyRadiance = vec3f(rgbData[0], rgbData[1], rgbData[2]);
skyRadiance = skyRadiance * shadow;
skyRadiance *= intensityScale;
}
skyImage->data()[index] = max(skyRadiance, vec3f(0.0f));
}
});
arhosekskymodelstate_free(rgbModel);
// recreate distribution
distribution = new Distribution2D(skySize, getISPCDevice());
// Release extra local ref
distribution->refDec();
ispc::HDRILight_initDistribution(map->getSh(), distribution->getSh());
}
void SunSkyLight::processIntensityQuantityType()
{
// validate the correctness of the light quantity type
if (intensityQuantity == OSP_INTENSITY_QUANTITY_SCALE) {
coloredIntensity = getParam<vec3f>("color", vec3f(1.f));
intensityScale = getParam<float>("intensity", 0.025f);
} else {
postStatusMsg(OSP_LOG_WARNING)
<< toString() << " unsupported 'intensityQuantity' value";
coloredIntensity = vec3f(0.0f);
}
}
} // namespace ospray
|