1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
// Copyright 2009 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "halton.ih"
#include "rkcommon/math/vec.ih"
#include "sobol.ih"
OSPRAY_BEGIN_ISPC_NAMESPACE
///////////////////////////////////////////////////////////////////////////////
// Hash functions
inline uint32 MurmurHash3_mix(uint32 hash, uint32 k)
{
const uint32 c1 = 0xcc9e2d51;
const uint32 c2 = 0x1b873593;
const uint32 r1 = 15;
const uint32 r2 = 13;
const uint32 m = 5;
const uint32 n = 0xe6546b64;
k *= c1;
k = (k << r1) | (k >> (32 - r1));
k *= c2;
hash ^= k;
hash = ((hash << r2) | (hash >> (32 - r2))) * m + n;
return hash;
}
inline uint32 MurmurHash3_finalize(uint32 hash)
{
hash ^= hash >> 16;
hash *= 0x85ebca6b;
hash ^= hash >> 13;
hash *= 0xc2b2ae35;
hash ^= hash >> 16;
return hash;
}
// https://github.com/skeeto/hash-prospector/
inline uint32 tripleHash(uint32 x)
{
x ^= x >> 17;
x *= 0xed5ad4bb;
x ^= x >> 11;
x *= 0xac4c1b51;
x ^= x >> 15;
x *= 0x31848bab;
x ^= x >> 14;
return x;
}
// https://github.com/skeeto/hash-prospector/issues/12#issuecomment-1105792182
/* but https://github.com/skeeto/hash-prospector/issues/28
inline uint32 hash32(uint32 hash)
{
hash ^= hash >> 16;
hash *= 0x21f0aaad;
hash ^= hash >> 15;
hash *= 0xf35a2d97;
hash ^= hash >> 15;
return hash;
}*/
inline uint32 hashToRandom(uint32 value, uint32 scramble)
{
value = (value ^ 61) ^ scramble;
value += value << 3;
value ^= value >> 4;
value *= 0x27d4eb2d;
return value;
}
///////////////////////////////////////////////////////////////////////////////
// Utility functions
inline float CranleyPattersonRotation(float x, float dx)
{
x += dx;
if (x >= 1.f)
x -= 1.f;
return x;
}
inline vec2f CranleyPattersonRotation(vec2f v, vec2f dv)
{
const float x = CranleyPattersonRotation(v.x, dv.x);
const float y = CranleyPattersonRotation(v.y, dv.y);
return make_vec2f(x, y);
}
inline float radicalInverse(uint32 idx, const uint32 base)
{
float f = 0.f, g = 1.0f, inv = 1.0f / base;
while (idx > 0) {
g *= inv;
f += (idx % base) * g;
idx /= base;
}
return f;
}
////////////////////V///////////////////////////////////////////////////////////
// PCG pseudo-random number generator http://www.pcg-random.org/
struct RandomSampler
{
uint64 state;
uint32 stream;
};
inline uint32 RandomSampler_pcg32(varying RandomSampler *uniform self)
{
uint64 oldstate = self->state;
self->state = oldstate * 6364136223846793005ULL + (self->stream | 1u);
uint32 xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
uint32 rot = oldstate >> 59u;
return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
}
inline float RandomSampler_getFloat(varying RandomSampler *uniform self)
{
return to_float_unorm(RandomSampler_pcg32(self));
}
inline void RandomSampler_init(
varying RandomSampler *uniform self, uint32 seed, uint32 stream)
{
self->state = 0;
self->stream = (stream << 1u) | 1u;
// hash seed to reduce correlation artefacts
self->state = MurmurHash3_mix(self->state, seed);
self->state = MurmurHash3_finalize(self->state);
RandomSampler_pcg32(self);
self->state += seed;
RandomSampler_pcg32(self);
}
inline void RandomSampler_init(varying RandomSampler *uniform self, uint32 seed)
{
RandomSampler_init(self, seed, 0);
}
///////////////////////////////////////////////////////////////////////////////
// TEA - Random numbers based on Tiny Encryption Algorithm
inline void tea8(uint32 &_v0, uint32 &_v1)
{
uint32 v0 = _v0; // operate on registers to avoid slowdown
uint32 v1 = _v1;
uint32 sum = 0;
for (uniform int i = 0; i < 8; i++) { // just 8 instead of 32 rounds
sum += 0x9e3779b9;
v0 += ((v1 << 4) + 0xa341316c) ^ (v1 + sum) ^ ((v1 >> 5) + 0xc8013ea4);
v1 += ((v0 << 4) + 0xad90777d) ^ (v0 + sum) ^ ((v0 >> 5) + 0x7e95761e);
}
_v0 = v0;
_v1 = v1;
}
struct RandomTEA
{
vec2ui state;
};
inline void RandomTEA_Constructor(
varying RandomTEA *uniform self, const uint32 idx, const uint32 seed)
{
self->state.x = idx;
self->state.y = seed;
}
inline varying vec2f RandomTEA_getFloats(varying RandomTEA *uniform self)
{
tea8(self->state.x, self->state.y);
return to_float_unorm(self->state);
}
///////////////////////////////////////////////////////////////////////////////
// LCG - Linear Congruential Generator
inline uint32 LCG_init(uint32 pixelID, uint32 sampleIndex)
{
uint32 state = 0;
state = MurmurHash3_mix(state, pixelID);
state = MurmurHash3_mix(state, sampleIndex);
state = MurmurHash3_finalize(state);
return state;
}
inline uint32 LCG_next(uint32 value)
{
const uint32 m = 1664525;
const uint32 n = 1013904223;
return value * m + n;
}
inline float LCG_getFloat(uint32 &state)
{
state = LCG_next(state);
return to_float_unorm(state);
}
inline vec2f LCG_getFloat2(uint32 &state)
{
const float x = LCG_getFloat(state);
const float y = LCG_getFloat(state);
return make_vec2f(x, y);
}
inline vec3f LCG_getFloat3(uint32 &state)
{
const float x = LCG_getFloat(state);
const float y = LCG_getFloat(state);
const float z = LCG_getFloat(state);
return make_vec3f(x, y, z);
}
// https://psychopath.io/post/2021_01_30_building_a_better_lk_hash
inline uint32 OwenHash2(uint32 x, uint32 seed)
{
x ^= x * 0x3d20adea;
x += seed;
x *= (seed >> 16) | 1;
x ^= x * 0x05526c56;
x ^= x * 0x53a22864;
return x;
}
inline uint32 OwenScramble2(uint32 x, uint32 seed)
{
x = reverseBits(x);
x = OwenHash2(x, seed);
return reverseBits(x);
}
inline uint32 OwenScramble4(uint32 x, uint32 seed)
{
x = reverseBits(x);
// https://psychopath.io/post/2022_08_14_a_fast_hash_for_base_4_owen_scrambling
x ^= x * 0x3d20adea;
x ^= (x >> 1) & (x << 1) & 0x55555555;
x += seed;
x *= (seed >> 16) | 1;
x ^= (x >> 1) & (x << 1) & 0x55555555;
x ^= x * 0x05526c56;
x ^= x * 0x53a22864;
return reverseBits(x);
}
#define SCRAMBLE0 0x9374b0d3
#define SCRAMBLE1 0x1ec38426
#define SCRAMBLE2 0xdb81c29c
#define SCRAMBLE3 0x5628372b
#define SCRAMBLE4 0xbcb745bd
#ifdef OSPRAY_PATHTRACER_DEBUG
// alternative drop-in implementations with same interface for debugging
#include "random_debug.inl"
#else
////////////////////////////////////////////////////////////////////////////////
// Low-discrepancy sampler: shuffled (padding 5 dimensions), scrambled Sobol
// Burley, "Practical Hash-based Owen Scrambling", 2020
struct LDSampler
{
uint32 revIndex; // bit-reversed sample index
uint32 scramble; // seed for scrambling the samples
uint32 baseIndexLight; // when sequence is split (blue noise)
// valid bits TODO should move to global PT Context
uniform uint32 idxMask;
uniform uint32 idxMaskLight;
};
inline void LDSampler_init(varying LDSampler &self,
const uint32 seed,
const uint32 sampleIndex,
const uint32 sampleOffsetLight = 0,
const uniform uint32 bits = 16,
const uniform uint32 bitsLight = 16)
{
self.revIndex = reverseBits(sampleIndex);
self.scramble = seed; // avoid zero!
self.baseIndexLight = sampleOffsetLight;
self.idxMask = bits > 31 ? -1u : ~(-1u >> bits);
self.idxMaskLight = bitsLight > 31 ? -1u : ~(-1u >> bitsLight);
}
inline void LDSampler_nextGroup(LDSampler &self)
{
// padding: new decorrelated group
self.scramble = tripleHash(self.scramble);
}
inline float LDSamplerScramble(const uint32 sample, const uint32 scramble)
{
return to_float_unorm(reverseBits(OwenHash2(sample, scramble)));
}
inline vec2f LDSampler_get3LightSamples(const LDSampler &self,
const uniform uint32 idx,
const bool split,
float &ss)
{
uint32 revIndex =
split ? reverseBits(self.baseIndexLight + idx) : self.revIndex;
revIndex = OwenHash2(revIndex, self.scramble); // shuffle
revIndex &= split ? self.idxMaskLight : self.idxMask;
// sample
const uint32 r0 = reverseBits(revIndex);
const vec2ui r12 = Sobol_revSample2(revIndex);
vec2f res;
res.x = LDSamplerScramble(r0, self.scramble ^ SCRAMBLE0);
res.y = LDSamplerScramble(r12.x, self.scramble ^ SCRAMBLE1);
ss = LDSamplerScramble(r12.y, self.scramble ^ SCRAMBLE2);
return res;
}
// the first 3 dims are already returned
// the remaining 4th dim needs finalization (scrambling)
inline vec2f LDSampler_getNext4Samples(LDSampler &self, float &ss, uint32 &u)
{
LDSampler_nextGroup(self);
// shuffle
const uint32 revIndex =
OwenHash2(self.revIndex, self.scramble) & self.idxMask;
// sample
const uint32 r0 = reverseBits(revIndex);
const vec3ui r123 = Sobol_revSample3(revIndex);
vec2f res;
res.x = LDSamplerScramble(r0, self.scramble ^ SCRAMBLE0);
res.y = LDSamplerScramble(r123.x, self.scramble ^ SCRAMBLE1);
ss = LDSamplerScramble(r123.y, self.scramble ^ SCRAMBLE2);
u = r123.z;
return res;
}
inline float LDSampler_finalizeDim3(const LDSampler &self, const uint32 revRes)
{
return LDSamplerScramble(revRes, self.scramble ^ SCRAMBLE3);
}
// the first 2 dims are already returned (the best ones)
// the next remaining 3 dims need finalization (scrambling)
inline vec2f LDSampler_getNext5Samples(LDSampler &self, vec3ui &ss)
{
LDSampler_nextGroup(self);
// shuffle
const uint32 revIndex =
OwenHash2(self.revIndex, self.scramble) & self.idxMask;
// sample
const uint32 r0 = reverseBits(revIndex);
const vec4ui r1234 = Sobol_revSample4(revIndex);
vec2f res;
res.x = LDSamplerScramble(r0, self.scramble ^ SCRAMBLE0);
res.y = LDSamplerScramble(r1234.x, self.scramble ^ SCRAMBLE1);
ss = make_vec3ui(r1234.y, r1234.z, r1234.w);
return res;
}
inline vec2f LDSampler_finalizeDim23(
const LDSampler &self, const vec3ui &revRes)
{
vec2f res;
res.x = LDSamplerScramble(revRes.x, self.scramble ^ SCRAMBLE2);
res.y = LDSamplerScramble(revRes.y, self.scramble ^ SCRAMBLE3);
return res;
}
inline float LDSampler_finalizeDim4(const LDSampler &self, const vec3ui &revRes)
{
return LDSamplerScramble(revRes.z, self.scramble ^ SCRAMBLE4);
}
#undef SCRAMBLE0
#undef SCRAMBLE1
#undef SCRAMBLE2
#undef SCRAMBLE3
#undef SCRAMBLE4
#endif
///////////////////////////////////////////////////////////////////////////////
// Halton - low discrepancy halton sequence; first two dimensions; no state
inline varying vec2f HaltonSequence_get2D(varying uint32 idx)
{
return make_vec2f(Halton_sample2(idx), Halton_sample3(idx));
}
OSPRAY_END_ISPC_NAMESPACE
|