1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
// Copyright 2009 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "CarPaint.ih"
#include "common/Ray.ih"
#include "render/Material.ih"
#include "render/bsdfs/Conductor.ih"
#include "render/bsdfs/DielectricLayer.ih"
#include "render/bsdfs/Lambert.ih"
#include "render/bsdfs/MicrofacetConductor.ih"
#include "render/bsdfs/MicrofacetDielectricLayer.ih"
#include "render/bsdfs/OrenNayar.ih"
#include "render/bsdfs/PassthroughLayer.ih"
#include "render/shaders/Flakes.ih"
#include "texture/TextureParam.ih"
// c++ shared
#include "CarPaintShared.h"
///////////////////////////////////////////////////////////////////////////////
// Implementation
OSPRAY_BEGIN_ISPC_NAMESPACE
struct CarPaint_BSDF
{
BSDF root;
MicrofacetDielectricLayer dielectricLayer;
int flakeMask;
MicrofacetConductor conductor;
OrenNayar baseDiffuse;
};
SYCL_EXTERNAL const varying BSDF *uniform CarPaint_getBSDF(
const uniform Material *uniform super,
uniform ShadingContext *uniform ctx,
const DifferentialGeometry &dg,
const Ray &ray,
const Medium &,
const uniform FeatureFlagsHandler &)
{
const uniform CarPaint *uniform self = (const uniform CarPaint *uniform)super;
varying linear3f *uniform frame = LinearSpace3f_create(ctx,
makeShadingFrame(dg, self->normalMap, self->normalRot, self->normal));
// Allocate memory and initialize material BSDF
varying CarPaint_BSDF *uniform bsdf = (varying CarPaint_BSDF * uniform)
ShadingContext_alloc(ctx, sizeof(CarPaint_BSDF));
const float flakeDensity =
clamp(self->flakeDensity * get1f(self->flakeDensityMap, dg, 1.f));
int flakeMask = 0;
varying linear3f *uniform flakeFrame = NULL;
varying BSDF *varying substrate = NULL;
// metallic flakes in the clear coat layer
if (flakeDensity > EPS) {
const float flakeScale =
max(self->flakeScale * get1f(self->flakeScaleMap, dg, 1.f), 0.f);
const float flakeSpread =
max(self->flakeSpread * get1f(self->flakeSpreadMap, dg, 1.f), 0.f);
const float flakeJitter =
clamp(self->flakeJitter * get1f(self->flakeJitterMap, dg, 1.f));
Flakes flakes;
flakes.scale = flakeScale;
flakes.density = flakeDensity;
flakes.spread = flakeSpread;
flakes.jitter = flakeJitter;
const vec3f flakeN = Flakes_eval(flakes, dg.P, flakeMask);
if (flakeMask) {
flakeFrame = LinearSpace3f_create(ctx, makeShadingFrame(dg, flakeN));
Fresnel *uniform flakeFresnel;
if (self->useFlakeColor) {
const vec3f r = clamp(
self->flakeColor * get3f(self->flakeColorMap, dg, make_vec3f(1.f)));
const vec3f g = make_vec3f(1.f);
flakeFresnel = FresnelSchlick_create(ctx, r, g);
} else {
// flakes are made of aluminum
const uniform vec3f flakeEta =
make_vec3f(1.69700277f, 0.879832864f, 0.5301736f);
const uniform vec3f flakeK =
make_vec3f(9.30200672f, 6.27604008f, 4.89433956f);
flakeFresnel = FresnelConductorRGBUniform_create(ctx, flakeEta, flakeK);
}
if (self->flakeRoughness < EPS)
Conductor_Constructor((varying Conductor * uniform) & bsdf->conductor,
flakeFrame,
flakeFresnel);
else
MicrofacetConductor_Constructor(&bsdf->conductor,
super->microfacetAlbedoTables,
flakeFrame,
flakeFresnel,
max(self->flakeRoughness * get1f(self->flakeRoughnessMap, dg, 1.f),
0.f),
0.f);
substrate = &bsdf->conductor.super;
}
}
// base diffuse layer
if (!flakeMask) {
const vec3f baseColor =
clamp(self->baseColor * get3f(self->baseColorMap, dg, make_vec3f(1.f))
* make_vec3f(dg.color));
if (self->roughness < EPS)
Lambert_Constructor(
(varying BSDF * uniform) & bsdf->baseDiffuse, frame, baseColor);
else
OrenNayar_Constructor(&bsdf->baseDiffuse,
frame,
baseColor,
max(self->roughness * get1f(self->roughnessMap, dg, 1.f), 0.f));
substrate = &bsdf->baseDiffuse.super;
}
bsdf->flakeMask = flakeMask;
// clear coat layer
if ((self->coat > EPS)
&& (abs(self->coatIor - 1.f) > EPS || valid(self->coatIorMap))) {
const float coat = max(self->coat * get1f(self->coatMap, dg, 1.f), 0.f);
float coatIor = self->coatIor * get1f(self->coatIorMap, dg, 1.f);
if (coatIor < 1.f)
coatIor = rcp(coatIor);
coatIor = clamp(coatIor, 1.f, 3.f); // clamp to common range due to LUTs
// compute the final coat color
const vec3f coatColor =
clamp(self->coatColor * get3f(self->coatColorMap, dg, make_vec3f(1.f)));
vec3f coatFinalColor = coatColor;
if (flakeMask) {
const float flipflopFalloff = clamp(
self->flipflopFalloff * get1f(self->flipflopFalloffMap, dg, 1.f));
if (flipflopFalloff < 1.f - EPS) {
// pearlescent flakes
const vec3f flipflopColor = clamp(self->flipflopColor
* get3f(self->flipflopColorMap, dg, make_vec3f(1.f)));
const float cosThetaO = max(-dot(ray.dir, flakeFrame->vz), 0.f);
const float weight = pow(1.f - cosThetaO,
rcp(1.f - flipflopFalloff)); // use Schlick for the blending weight
coatFinalColor = lerp(weight, coatColor, flipflopColor);
}
}
const float coatThickness =
max(self->coatThickness * get1f(self->coatThicknessMap, dg, 1.f), 0.f);
varying linear3f *uniform coatFrame = LinearSpace3f_create(ctx,
makeShadingFrame(
dg, self->coatNormalMap, self->coatNormalRot, self->coatNormal));
if (self->coatRoughness < EPS) {
DielectricLayer_Constructor(
(varying DielectricLayer * uniform) & bsdf->dielectricLayer,
coatFrame,
substrate,
rcp(coatIor),
coatFinalColor,
coatThickness,
coat);
} else {
MicrofacetDielectricLayer_Constructor(&bsdf->dielectricLayer,
super->microfacetAlbedoTables,
coatFrame,
substrate,
rcp(coatIor),
coatFinalColor,
coatThickness,
max(self->coatRoughness * get1f(self->coatRoughnessMap, dg, 1.f),
0.f),
0.f,
coat);
}
} else {
PassthroughLayer_Constructor(
(varying PassthroughLayer * uniform) & bsdf->dielectricLayer,
substrate);
}
bsdf->root = bsdf->dielectricLayer.super;
bsdf->root.bsdfType = BSDF_TYPE_CARPAINT;
return &bsdf->root;
}
// Conductor BSDF
inline BSDF_EvalRes ConductorBSDF_eval(
const varying MicrofacetConductor *uniform self,
const vec3f &wo,
const vec3f &wi)
{
if (self->super.bsdfType == BSDF_TYPE_MICROFACET_CONDUCTOR)
return MicrofacetConductor_eval(self, wo, wi);
else
return make_BSDF_EvalRes_zero();
}
inline BSDF_SampleRes ConductorBSDF_sample(
const varying MicrofacetConductor *uniform self,
const vec3f &wo,
const vec2f &s,
float ss)
{
if (self->super.bsdfType == BSDF_TYPE_MICROFACET_CONDUCTOR)
return MicrofacetConductor_sample(self, wo, s, ss);
else
return Conductor_sample(&self->super, wo, s, ss);
}
// Diffuse BSDF
inline BSDF_EvalRes DiffuseBSDF_eval(
const varying OrenNayar *uniform self, const vec3f &wo, const vec3f &wi)
{
if (self->super.bsdfType == BSDF_TYPE_OREN_NAYAR)
return OrenNayar_eval(&self->super, wo, wi);
else
return Lambert_eval(&self->super, wo, wi);
}
inline BSDF_SampleRes DiffuseBSDF_sample(const varying OrenNayar *uniform self,
const vec3f &wo,
const vec2f &s,
float ss)
{
if (self->super.bsdfType == BSDF_TYPE_OREN_NAYAR)
return OrenNayar_sample(&self->super, wo, s, ss);
else
return Lambert_sample(&self->super, wo, s, ss);
}
// Base layer BSDF
__noinline BSDF_EvalRes BaseBSDF_eval(
const varying CarPaint_BSDF *uniform self, const vec3f &wo, const vec3f &wi)
{
if (self->flakeMask) {
return ConductorBSDF_eval(&self->conductor, wo, wi);
} else {
return DiffuseBSDF_eval(&self->baseDiffuse, wo, wi);
}
}
__noinline BSDF_SampleRes BaseBSDF_sample(
const varying CarPaint_BSDF *uniform self,
const vec3f &wo,
const vec2f &s,
float ss)
{
if (self->flakeMask) {
return ConductorBSDF_sample(&self->conductor, wo, s, ss);
} else {
return DiffuseBSDF_sample(&self->baseDiffuse, wo, s, ss);
}
}
// DielectricLayer BSDF
inline BSDF_EvalRes DielectricLayerBSDF_eval(
const varying CarPaint_BSDF *uniform self, const vec3f &wo, const vec3f &wi)
{
BSDFScatteringType scatteringType = (self->flakeMask)
? self->conductor.super.scatteringType
: self->baseDiffuse.super.scatteringType;
DIELECTRICLAYER_EVAL(
self->dielectricLayer, scatteringType, self, BaseBSDF_eval);
return DIELECTRICLAYER_EVAL_GET();
}
inline BSDF_SampleRes DielectricLayerBSDF_sample(
const varying CarPaint_BSDF *uniform self,
const vec3f &wo,
const vec2f &s,
float ss)
{
BSDFScatteringType scatteringType = (self->flakeMask)
? self->conductor.super.scatteringType
: self->baseDiffuse.super.scatteringType;
DIELECTRICLAYER_SAMPLE(
self->dielectricLayer, scatteringType, self, BaseBSDF_sample);
return DIELECTRICLAYER_SAMPLE_GET();
}
// MicrofacetDielectricLayer BSDF
inline BSDF_EvalRes MicrofacetDielectricLayerBSDF_eval(
const varying CarPaint_BSDF *uniform self, const vec3f &wo, const vec3f &wi)
{
BSDFScatteringType scatteringType = (self->flakeMask)
? self->conductor.super.scatteringType
: self->baseDiffuse.super.scatteringType;
MICROFACETDIELECTRICLAYER_EVAL(
self->dielectricLayer, scatteringType, self, BaseBSDF_eval);
return MICROFACETDIELECTRICLAYER_EVAL_GET();
}
inline BSDF_SampleRes MicrofacetDielectricLayerBSDF_sample(
const varying CarPaint_BSDF *uniform self,
const vec3f &wo,
const vec2f &s,
float ss)
{
BSDFScatteringType scatteringType = (self->flakeMask)
? self->conductor.super.scatteringType
: self->baseDiffuse.super.scatteringType;
MICROFACETDIELECTRICLAYER_SAMPLE(self->dielectricLayer,
scatteringType,
self,
BaseBSDF_eval,
BaseBSDF_sample);
return MICROFACETDIELECTRICLAYER_SAMPLE_GET();
}
// CarPaint BSDF
SYCL_EXTERNAL BSDF_EvalRes CarPaint_BSDF_eval(
const varying BSDF *uniform super, const vec3f &wo, const vec3f &wi)
{
const varying CarPaint_BSDF *uniform self =
(const varying CarPaint_BSDF *uniform)super;
// Skip dielectric layer if no clear coat
if (self->dielectricLayer.weight < EPS)
return BaseBSDF_eval(self, wo, wi);
if (self->dielectricLayer.super.bsdfType
== BSDF_TYPE_MICROFACET_DIELECTRIC_LAYER)
return MicrofacetDielectricLayerBSDF_eval(self, wo, wi);
else
return DielectricLayerBSDF_eval(self, wo, wi);
}
SYCL_EXTERNAL BSDF_SampleRes CarPaint_BSDF_sample(
const varying BSDF *uniform super,
const vec3f &wo,
const vec2f &s,
float ss)
{
const varying CarPaint_BSDF *uniform self =
(const varying CarPaint_BSDF *uniform)super;
// Skip dielectric layer if no clear coat
if (self->dielectricLayer.weight < EPS)
return BaseBSDF_sample(self, wo, s, ss);
if (self->dielectricLayer.super.bsdfType
== BSDF_TYPE_MICROFACET_DIELECTRIC_LAYER)
return MicrofacetDielectricLayerBSDF_sample(self, wo, s, ss);
else
return DielectricLayerBSDF_sample(self, wo, s, ss);
}
///////////////////////////////////////////////////////////////////////////////
// External API
export void *uniform CarPaint_getBSDF_addr()
{
return (void *uniform)CarPaint_getBSDF;
}
OSPRAY_END_ISPC_NAMESPACE
|