File: PathSampler.ispc

package info (click to toggle)
ospray 3.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,048 kB
  • sloc: cpp: 80,569; ansic: 951; sh: 805; makefile: 170; python: 69
file content (364 lines) | stat: -rw-r--r-- 11,845 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
// Copyright 2009 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include "render/pathtracer/GeometryLight.ih"
#include "render/pathtracer/NextEventEstimation.ih"
#include "render/pathtracer/PathSampler.ih"
#include "render/pathtracer/PathStructs.ih"
#include "render/pathtracer/PathTracerDefines.ih"
#include "render/pathtracer/PathTracerUtil.ih"
#include "render/pathtracer/ShadowCatcher.ih"
#include "render/pathtracer/TransparentShadow.ih"
#include "render/pathtracer/VirtualLight.ih"

#include "common/Intersect.ih"
#include "common/World.ih"
#include "math/random.ih"
#include "render/Material.ih"
#include "render/MaterialDispatch.ih"
#include "render/bsdfs/MicrofacetAlbedoTables.ih"
#include "render/bsdfs/ShadingContext.ih"
#include "render/materials/Medium.ih"
#ifdef OSPRAY_ENABLE_VOLUMES
#include "render/pathtracer/volumes/VolumeSampler.ih"
#endif

// c++ shared
#include "PathTracerDataShared.h"
#include "PathTracerShared.h"
#include "common/RayCone.ih"

OSPRAY_BEGIN_ISPC_NAMESPACE

inline void postIntersect(const PathContext &pathContext,
    PathVertex &pathVertex,
    Ray &ray,
    RayCone &rayCone,
    const uniform FeatureFlagsHandler &ffh)
{
  const PathTracer *uniform pt = pathContext.context;
  const uniform FeatureFlags ff = getFeatureFlags(ffh);
  if (ff.geometry && pathVertex.type == SURFACE) {
    postIntersect(pathContext.world,
        &pt->super,
        pathVertex.dg,
        ray,
        rayCone,
        DG_NS | DG_NG | DG_FACEFORWARD | DG_NORMALIZE | DG_TEXCOORD | DG_COLOR
            | DG_TANGENTS | DG_MOTIONBLUR,
        ffh);
  }
#ifdef OSPRAY_ENABLE_VOLUMES
  if ((ff.other & FFO_VOLUME_IN_SCENE) && pathVertex.type == VOLUME) {
    pathVertex.dg.P = ray.org + ray.t * ray.dir;
    pathVertex.dg.renderer = &pt->super;

    pathVertex.dg.instID = ray.instID;
    foreach_unique (instID in ray.instID) {
      if (instID != RTC_INVALID_GEOMETRY_ID) {
        const World *uniform world = pathContext.world;
        const Instance *uniform instance = *(world->instances + instID);
        if (instance->userID != RTC_INVALID_GEOMETRY_ID)
          pathVertex.dg.instID = instance->userID;
      }
    }

    foreach_unique (volm in pathVertex.volume)
      VolumetricModel_postIntersect(volm, pathVertex.dg, ray, 0);
  }
#endif
}

inline Scattering_SampleRes sampleDirection(const vec2f &s,
    const float ss,
    PathVertex &pathVertex,
    const uniform FeatureFlagsHandler &ffh)
{
  const uniform FeatureFlags ff = getFeatureFlags(ffh);

  Scattering_SampleRes fs;
  fs.weight = make_vec3f(0.0f);
  if (ff.geometry && pathVertex.type == SURFACE) {
    foreach_unique (f in pathVertex.bsdf) {
      if (f != NULL) {
        fs = BSDF_dispatch_sample(f, pathVertex.wo, s, ss, ffh);
        pathVertex.wi = fs.wi;
        pathVertex.pdf_w = fs.pdf;
      }
    }
    // check consistent side of surface to prevent light leaks
    const bool sameSide = dot(fs.wi, pathVertex.dg.Ng) >= 0.f;
    const bool reflection = fs.type & SCATTERING_REFLECTION;
    if (sameSide != reflection)
      fs.weight = make_vec3f(0.0f);
  }
#ifdef OSPRAY_ENABLE_VOLUMES
  if ((ff.other & FFO_VOLUME_IN_SCENE) && pathVertex.type == VOLUME) {
    foreach_unique (v in pathVertex.volume) {
      if (v != NULL) {
        fs = HenyeyGreenstein_sample(v->anisotropy, pathVertex.wo, s, ss);
        pathVertex.wi = fs.wi;
        pathVertex.pdf_w = fs.pdf;
      }
    }
  }
#endif
  return fs;
}

SYCL_EXTERNAL void samplePath(const PathContext &pathContext,
    PathState &pathState,
    Ray &ray,
    RayCone &rayCone,
    ScreenSample &sample,
    const uniform FeatureFlagsHandler &ffh)
{
  PathVertex lastVertex;
  lastVertex.type = CAMERA;
#ifdef OSPRAY_ENABLE_VOLUMES
  lastVertex.volume = NULL;
#endif
  lastVertex.pdf_w =
      inf; // probability density of previous sampled BSDF, for MIS
  lastVertex.dg.P = ray.org; // P and N also used by light eval
  lastVertex.dg.epsilon = calcEpsilon(ray.org, 0.f);
  lastVertex.dg.Ns = ray.dir;
  lastVertex.dg.Ng = ray.dir;
  lastVertex.numLightSamples = 0;

  uniform ShadingContext ctx;
  ShadingContext_Constructor(&ctx);
  const uniform FeatureFlags ff = getFeatureFlags(ffh);

  if (pathContext.context->shadowCatcher) {
    const Hit hit = intersectPlane(
        ray.org, ray.dir, pathContext.context->shadowCatcherPlane);
    if (hit.hit)
      pathState.shadowCatcherDist = hit.t;
  }
  do {
    if (pathState.shadowCatcherDist
        > ray.t0) // valid hit can hide other geometry
      ray.t = min(pathState.shadowCatcherDist, ray.t);

    // Trace ray in clipping geometries scene, fill array with ray intervals
    RayIntervals rayIntervals;
    traceClippingRay(pathContext.world, ray, rayIntervals, ffh);

    if (ff.geometry) {
      // Trace ray intervals in geometry
      traceGeometryRayIntervals(pathContext.world, ray, rayIntervals, ffh);
    }

    PathVertex pathVertex;
    pathVertex.bsdf = NULL;
    pathVertex.pdf_w = inf;
#ifdef OSPRAY_ENABLE_VOLUMES
    pathVertex.volume = NULL;
#endif
    pathVertex.type = noHit(ray) || !ff.geometry ? ENVIRONMENT : SURFACE;

    if (shadowCatcher(pathContext, pathState, pathVertex, ray, rayCone, ffh)) {
      pathVertex.type = ENVIRONMENT;
    }

    pathVertex.wo = neg(ray.dir);

#ifdef OSPRAY_ENABLE_VOLUMES
    if (ff.other & FFO_VOLUME_IN_SCENE) {
      float extinctionCoefficient;
      float freePath = volumeSampleFreePath(pathContext.world,
          ray,
          rayIntervals,
          &pathState.randomSampler,
          &pathVertex.volume,
          extinctionCoefficient,
          pathVertex.albedo,
          ffh);
      if (freePath < inf) {
        pathVertex.type = VOLUME;
        pathState.throughput = pathState.throughput * pathVertex.albedo;
      }
    }
#endif

    // record depth of primary rays
    if (pathState.depth == 0)
      sample.z = ray.t;

    // background handling
    if (pathVertex.type == ENVIRONMENT
        && (pathContext.context->backgroundRefraction
                ? pathState.specularTransmissionPath
                : pathState.straightPath)) {
      vec4f bg = Renderer_getBackground(
          &pathContext.context->super, pathContext.screen, ffh);
      pathState.contribution =
          pathState.contribution + pathState.throughput * make_vec3f(bg);
      sample.alpha = 1.0f - luminance(pathState.throughput);
      sample.alpha += (1.f - sample.alpha) * bg.w;
    }

#ifdef OSPRAY_PATHTRACER_DEBUG
    if (!pathContext.disableFWD || pathState.depth == 0)
#endif
#ifdef OSPRAY_ENABLE_VOLUMES
      if (pathVertex.type != VOLUME)
#endif
      {
        pathState.contribution = pathState.contribution
            + evaluateVirtualLights(
                pathContext, pathState, lastVertex, pathVertex, ray, ffh);
      }

    if (pathVertex.type == ENVIRONMENT) {
      break;
    }

    // terminate after evaluation of lights and before next shading to always
    // have both samples for MIS except if we have geometry lights (which we
    // still need to evaluate for MIS)
    if (pathState.depth >= pathContext.context->super.maxDepth
        && pathContext.numGeoLights == 0) {
      break;
    }

    postIntersect(pathContext, pathVertex, ray, rayCone, ffh);

#ifdef OSPRAY_PATHTRACER_DEBUG
    if (!pathContext.disableFWD || pathState.depth == 0)
#endif
#ifdef OSPRAY_ENABLE_VOLUMES
      if (pathVertex.type != VOLUME)
#endif
      {
        pathState.contribution = pathState.contribution
            + evaluateGeometryLights(
                pathContext, pathState, lastVertex, pathVertex, ray, ffh);
      }

    // record IDs of primary rays
    if (pathState.depth == 0) {
      sample.primID = pathVertex.dg.primID;
      sample.geomID = pathVertex.dg.objID;
      sample.instID = pathVertex.dg.instID;
    }

    // terminate after evaluation of lights and before next shading to always
    // have both samples for MIS
    if (pathState.depth >= pathContext.context->super.maxDepth
        || pathState.scatteringEvents
            >= pathContext.context->maxScatteringEvents) {
      break;
    }

    // shade surface
    ShadingContext_Constructor(&ctx);
    if (ff.geometry && pathVertex.type == SURFACE) {
      Material *material = (Material *)pathVertex.dg.material;
      foreach_unique (m in material) {
        if (m != NULL) {
          pathVertex.bsdf = Material_dispatch_getBSDF(
              m, &ctx, pathVertex.dg, ray, pathState.currentMedium, ffh);
          if (pathVertex.bsdf != NULL) {
            pathVertex.albedo = pathVertex.bsdf->albedo;
          }
        }
      }
      // terminate path when we don't have any BSDF
      if (pathVertex.bsdf == NULL) {
        break;
      }
    }

    // unconditionally advance sampler state to stay in lockstep across paths
    LDSampler_nextGroup(pathState.ldSampler);
    // next event estimation
    if (isSmooth(pathVertex)) {
      // record last vertex of a specular-only path
      if (pathState.scatteringEvents == 0)
        updateAuxilliaryData(pathState, pathVertex, sample);
#ifdef OSPRAY_PATHTRACER_DEBUG
      if (!pathContext.disableNEE)
#endif
      {
        pathState.contribution = pathState.contribution
            + nextEventEstimation(
                pathContext, pathState, pathVertex, sample.rayCone.width, ffh);
        pathState.firstBounceLight = false;
      }
    }

    float ss;
    uint32 uu3;
    const vec2f s = LDSampler_getNext4Samples(pathState.ldSampler, ss, uu3);
    Scattering_SampleRes fs = sampleDirection(s, ss, pathVertex, ffh);

    // terminate path when zero contribution from material
    if (reduce_max(fs.weight) <= 0.0f || fs.pdf <= PDF_CULLING) {
      break;
    }

    pathState.throughput = pathState.throughput * fs.weight;

    // Russian roulette
    if (pathState.depth >= pathContext.context->rouletteDepth) {
      const float rr = LDSampler_finalizeDim3(pathState.ldSampler, uu3);
      const float contProb =
          min(reduce_max(pathState.throughput), MAX_ROULETTE_CONT_PROB);
      if (rr > contProb) {
        break;
      }
      pathState.throughput = pathState.throughput * rcp(contProb);
    }

    // compute attenuation with Beer's law
    if (reduce_min(pathState.currentMedium.attenuation) < 0.f)
      pathState.throughput = pathState.throughput
          * expf(pathState.currentMedium.attenuation * ray.t);

    vec3f ray_org = pathVertex.dg.P;
    if (ff.geometry && pathVertex.type == SURFACE) {
      // update currentMedium if we hit a medium interface
      // TODO: support nested dielectrics
      if (fs.type & SCATTERING_TRANSMISSION) {
        ray_org = ray_org - (2.0f * pathVertex.dg.epsilon) * pathVertex.dg.Ng;
        Material *material = (Material *)pathVertex.dg.material;
        foreach_unique (m in material) {
          if (m != NULL) {
            Material_dispatch_selectNextMedium(
                m, pathVertex.dg, pathState.currentMedium, ffh);
          }
        }
      }
    }

    // keep lastBsdfPdf and lastDg when there was a specular transmission
    // to better combine MIS with transparent shadows
    if (fs.type & ~SCATTERING_SPECULAR_TRANSMISSION
        || pathVertex.type == VOLUME) {
      lastVertex = pathVertex;
    }

    // continue the path
    if (!eq(ray.dir, fs.wi))
      pathState.straightPath = false;
    if (!(fs.type & SCATTERING_SPECULAR_TRANSMISSION))
      pathState.specularTransmissionPath = false;

    setRay(ray, ray_org, fs.wi, pathState.time);
    pathState.depth++;
    if (fs.type & SCATTERING_SMOOTH)
      pathState.scatteringEvents++;
  } while (reduce_max(pathState.throughput)
      > pathContext.context->super.minContribution);

  sample.rgb = pathState.contribution;
  if (isnan(pathState.contribution.x) || isnan(pathState.contribution.y)
      || isnan(pathState.contribution.z)) {
    sample.rgb = make_vec3f(0.f);
    sample.alpha = 1.0f;
  }
}

OSPRAY_END_ISPC_NAMESPACE