1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
// Copyright 2016 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "Context.h"
#include <snappy.h>
#include <algorithm>
#include <chrono>
#include <iostream>
#include "common/OSPCommon.h"
#include "rkcommon/memory/malloc.h"
#include "rkcommon/tasking/async.h"
#include "rkcommon/tasking/tasking_system_init.h"
#include "rkcommon/utility/getEnvVar.h"
using rkcommon::byte_t;
using rkcommon::make_unique;
using rkcommon::tasking::AsyncLoop;
using rkcommon::tasking::numTaskingThreads;
using rkcommon::utility::getEnvVar;
using namespace std::chrono;
namespace maml {
/*! the singleton object that handles all the communication */
std::unique_ptr<Context> Context::singleton;
Context::Context(bool enableCompression) : compressMessages(enableCompression)
{}
Context::~Context()
{
try {
stop();
} catch (const std::exception &e) {
ospray::handleError(OSP_UNKNOWN_ERROR, e.what());
}
}
/*! register a new incoing-message handler. if any message comes in
on the given communicator we'll call this handler */
void Context::registerHandlerFor(MPI_Comm comm, MessageHandler *handler)
{
if (handlers.find(comm) != handlers.end()) {
std::cerr << CODE_LOCATION
<< ": Warning: handler for this MPI_Comm already installed"
<< std::endl;
}
handlers[comm] = handler;
/*! todo: to avoid race conditions we MAY want to check if there's
any messages we've already received that would match this
handler */
}
/*! put the given message in the outbox. note that this can be
done even if the actual sending mechanism is currently
stopped */
void Context::send(std::shared_ptr<Message> msg)
{
// The message uses malloc/free, so use that instead of new/delete
if (compressMessages) {
byte_t *compressed =
(byte_t *)malloc(snappy::MaxCompressedLength(msg->size));
size_t compressedSize = 0;
snappy::RawCompress(reinterpret_cast<const char *>(msg->data),
msg->size,
reinterpret_cast<char *>(compressed),
&compressedSize);
free(msg->data);
msg->data = compressed;
msg->size = compressedSize;
}
outbox.push_back(std::move(msg));
}
void Context::queueCollective(std::shared_ptr<Collective> col)
{
// TODO WILL: auto-compress collectives?
collectiveOutbox.push_back(std::move(col));
}
void Context::processInboxMessages()
{
auto incomingMessages = inbox.consume();
for (auto &msg : incomingMessages) {
auto *handler = handlers[msg->comm];
if (compressMessages) {
// Decompress the message before handing it off
size_t uncompressedSize = 0;
snappy::GetUncompressedLength(reinterpret_cast<const char *>(msg->data),
msg->size,
&uncompressedSize);
byte_t *uncompressed = (byte_t *)malloc(uncompressedSize);
snappy::RawUncompress(reinterpret_cast<const char *>(msg->data),
msg->size,
reinterpret_cast<char *>(uncompressed));
free(msg->data);
msg->data = uncompressed;
msg->size = uncompressedSize;
}
handler->incoming(msg);
}
}
void Context::sendMessagesFromOutbox()
{
auto outgoingMessages = outbox.consume();
auto outgoingCollectives = collectiveOutbox.consume();
for (auto &msg : outgoingMessages) {
MPI_Request request;
int rank = 0;
MPI_CALL(Comm_rank(msg->comm, &rank));
// Don't send to ourself, just forward to the inbox directly
if (rank == msg->rank) {
inbox.push_back(std::move(msg));
} else {
MPI_CALL(Isend(msg->data,
msg->size,
MPI_BYTE,
msg->rank,
msg->tag,
msg->comm,
&request));
msg->started = high_resolution_clock::now();
pendingSends.push_back(request);
sendCache.push_back(std::move(msg));
}
}
for (auto &col : outgoingCollectives) {
col->start();
pendingCollectives.push_back(col);
}
}
void Context::pollForAndRecieveMessages()
{
for (auto &it : handlers) {
MPI_Comm comm = it.first;
/* probe if there's something incoming on this handler's comm */
int hasIncoming = 0;
MPI_Status status;
MPI_CALL(Iprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, comm, &hasIncoming, &status));
if (hasIncoming) {
int size;
MPI_CALL(Get_count(&status, MPI_BYTE, &size));
auto msg = std::make_shared<Message>(size);
msg->rank = status.MPI_SOURCE;
msg->tag = status.MPI_TAG;
msg->comm = comm;
MPI_Request request;
MPI_CALL(Irecv(
msg->data, size, MPI_BYTE, msg->rank, msg->tag, msg->comm, &request));
msg->started = high_resolution_clock::now();
pendingRecvs.push_back(request);
recvCache.push_back(std::move(msg));
}
}
}
void Context::waitOnSomeRequests()
{
if (!pendingSends.empty() || !pendingRecvs.empty()) {
const size_t totalMessages = pendingSends.size() + pendingRecvs.size();
int *done = STACK_BUFFER(int, totalMessages);
MPI_Request *mergedRequests = STACK_BUFFER(MPI_Request, totalMessages);
for (size_t i = 0; i < totalMessages; ++i) {
if (i < pendingSends.size()) {
mergedRequests[i] = pendingSends[i];
} else {
mergedRequests[i] = pendingRecvs[i - pendingSends.size()];
}
}
int numDone = 0;
MPI_CALL(Testsome(
totalMessages, mergedRequests, &numDone, done, MPI_STATUSES_IGNORE));
for (int i = 0; i < numDone; ++i) {
size_t msgId = done[i];
if (msgId < pendingSends.size()) {
pendingSends[msgId] = MPI_REQUEST_NULL;
sendCache[msgId] = nullptr;
} else {
msgId -= pendingSends.size();
inbox.push_back(std::move(recvCache[msgId]));
pendingRecvs[msgId] = MPI_REQUEST_NULL;
recvCache[msgId] = nullptr;
}
}
// Clean up anything we sent
sendCache.erase(std::remove(sendCache.begin(), sendCache.end(), nullptr),
sendCache.end());
pendingSends.erase(
std::remove(pendingSends.begin(), pendingSends.end(), MPI_REQUEST_NULL),
pendingSends.end());
// Clean up anything we received
recvCache.erase(std::remove(recvCache.begin(), recvCache.end(), nullptr),
recvCache.end());
pendingRecvs.erase(
std::remove(pendingRecvs.begin(), pendingRecvs.end(), MPI_REQUEST_NULL),
pendingRecvs.end());
}
if (!pendingCollectives.empty()) {
pendingCollectives.erase(std::remove_if(pendingCollectives.begin(),
pendingCollectives.end(),
[](const std::shared_ptr<Collective> &col) {
return col->finished();
}),
pendingCollectives.end());
}
}
void Context::flushRemainingMessages()
{
while (!pendingRecvs.empty() || !pendingSends.empty()
|| !pendingCollectives.empty() || !inbox.empty() || !outbox.empty()) {
sendMessagesFromOutbox();
pollForAndRecieveMessages();
waitOnSomeRequests();
processInboxMessages();
}
}
/*! start the service; from this point on maml is free to use MPI
calls to send/receive messages; if your MPI library is not
thread safe the app should _not_ do any MPI calls until 'stop()'
has been called */
void Context::start()
{
std::lock_guard<std::mutex> lock(tasksMutex);
if (!isRunning()) {
tasksAreRunning = true;
auto launchMethod = AsyncLoop::LaunchMethod::AUTO;
auto MAML_SPAWN_THREADS = getEnvVar<int>("MAML_SPAWN_THREADS");
if (MAML_SPAWN_THREADS) {
launchMethod = MAML_SPAWN_THREADS.value()
? AsyncLoop::LaunchMethod::THREAD
: AsyncLoop::LaunchMethod::TASK;
}
if (!sendReceiveThread.get()) {
sendReceiveThread = make_unique<AsyncLoop>(
[&]() {
sendMessagesFromOutbox();
pollForAndRecieveMessages();
waitOnSomeRequests();
},
launchMethod);
}
if (!processInboxThread.get()) {
processInboxThread = make_unique<AsyncLoop>(
[&]() { processInboxMessages(); }, launchMethod);
}
sendReceiveThread->start();
processInboxThread->start();
}
}
bool Context::isRunning() const
{
return tasksAreRunning;
}
/*! stops the maml layer; maml will no longer perform any MPI calls;
if the mpi layer is not thread safe the app is then free to use
MPI calls of its own, but it should not expect that this node
receives any more messages (until the next 'start()' call) even
if they are already in fligh
WILL: Don't actually stop, for reasons described above flush messages
*/
void Context::stop()
{
std::lock_guard<std::mutex> lock(tasksMutex);
if (tasksAreRunning) {
quitThreads = true;
if (sendReceiveThread) {
sendReceiveThread->stop();
}
if (processInboxThread) {
processInboxThread->stop();
}
tasksAreRunning = false;
flushRemainingMessages();
}
}
} // namespace maml
|