File: ospMPIDistribTutorial.cpp

package info (click to toggle)
ospray 3.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,048 kB
  • sloc: cpp: 80,569; ansic: 951; sh: 805; makefile: 170; python: 69
file content (202 lines) | stat: -rw-r--r-- 6,518 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// Copyright 2009 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

/* This is a small example tutorial how to use OSPRay and the
 * MPIDistributedDevice in a data-parallel application.
 * Each rank must specify the same render parameters, however the data
 * to render on each rank can differ for distributed rendering. In this
 * tutorial each rank renders a unique quad, which is colored by the rank.
 *
 * On Linux build it in the build_directory with:
 *   mpicxx ../modules/mpi/tutorials/ospMPIDistributedTutorial.cpp \
 *       -I ../ospray/include -I ../components \
 *       -L . -lospray -lospray_common -Wl,-rpath,. \
 *       -o ospMPIDistributedTutorialCpp
 *
 * Then run it with MPI on some number of processes
 *   mpirun -n <N> ./ospMPIDistributedTutorialCpp
 *
 * The output image should show a sequence of quads, from dark to light blue
 */

#include <errno.h>
#include <mpi.h>
#include <stdint.h>
#include <stdio.h>
#ifdef _WIN32
#define NOMINMAX
#include <malloc.h>
#else
#include <alloca.h>
#endif

#include "rkcommon/math/box.h"
#include "rkcommon/math/vec.h"
#include "rkcommon/utility/SaveImage.h"
#include "rkcommon/utility/getEnvVar.h"
// Note: we define OSPRAY_CPP_RKCOMMON_TYPES in CMAke to use rkcommon types
// natively through the C++ wrappers
#include "ospray/ospray_cpp.h"
#include "ospray/ospray_cpp/ext/rkcommon.h"

using namespace ospray;
using namespace rkcommon;
using namespace rkcommon::math;

int main(int argc, char **argv)
{
  int mpiThreadCapability = 0;
  MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &mpiThreadCapability);
  if (mpiThreadCapability != MPI_THREAD_MULTIPLE
      && mpiThreadCapability != MPI_THREAD_SERIALIZED) {
    fprintf(stderr,
        "OSPRay requires the MPI runtime to support thread "
        "multiple or thread serialized.\n");
    return 1;
  }

  int mpiRank = 0;
  int mpiWorldSize = 0;
  MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank);
  MPI_Comm_size(MPI_COMM_WORLD, &mpiWorldSize);

  // image size
  vec2i imgSize;
  imgSize.x = 1024; // width
  imgSize.y = 768; // height

  // camera
  vec3f cam_pos{(mpiWorldSize + 1.f) / 2.f, 0.5f, -mpiWorldSize * 0.5f};
  vec3f cam_up{0.f, 1.f, 0.f};
  vec3f cam_view{0.f, 0.f, 1.f};

  // all ranks specify the same rendering parameters, with the exception of
  // the data to be rendered, which is distributed among the ranks
  // triangle mesh data
  vec3f vertex[] = {vec3f(mpiRank, 0.0f, 3.5f),
      vec3f(mpiRank, 1.0f, 3.0f),
      vec3f(1.0f * (mpiRank + 1.f), 0.0f, 3.0f),
      vec3f(1.0f * (mpiRank + 1.f), 1.0f, 2.5f)};
  vec4f color[] = {vec4f(0.0f, 0.0f, (mpiRank + 1.f) / mpiWorldSize, 1.0f),
      vec4f(0.0f, 0.0f, (mpiRank + 1.f) / mpiWorldSize, 1.0f),
      vec4f(0.0f, 0.0f, (mpiRank + 1.f) / mpiWorldSize, 1.0f),
      vec4f(0.0f, 0.0f, (mpiRank + 1.f) / mpiWorldSize, 1.0f)};
  vec3ui index[] = {vec3ui(0, 1, 2), vec3ui(1, 2, 3)};

  // load the MPI module, and select the MPI distributed device. Here we
  // do not call ospInit, as we want to explicitly pick the distributed
  // device
  auto OSPRAY_MPI_DISTRIBUTED_GPU =
      utility::getEnvVar<int>("OSPRAY_MPI_DISTRIBUTED_GPU").value_or(0);
  if (OSPRAY_MPI_DISTRIBUTED_GPU) {
    ospLoadModule("mpi_distributed_gpu");
  } else {
    ospLoadModule("mpi_distributed_cpu");
  }

  // use scoped lifetimes of wrappers to release everything before ospShutdown()
  {
    cpp::Device mpiDevice("mpiDistributed");
    mpiDevice.commit();
    mpiDevice.setCurrent();

    // create and setup camera
    cpp::Camera camera("perspective");
    camera.setParam("aspect", imgSize.x / (float)imgSize.y);
    camera.setParam("position", cam_pos);
    camera.setParam("direction", cam_view);
    camera.setParam("up", cam_up);
    camera.commit(); // commit each object to indicate modifications are done

    // create and setup model and mesh
    cpp::Geometry mesh("mesh");
    cpp::CopiedData data(vertex, 4);
    data.commit();
    mesh.setParam("vertex.position", data);

    data = cpp::CopiedData(color, 4);
    data.commit();
    mesh.setParam("vertex.color", data);

    data = cpp::CopiedData(index, 2);
    data.commit();
    mesh.setParam("index", data);

    mesh.commit();

    // put the mesh into a model
    cpp::GeometricModel model(mesh);
    model.commit();

    // put the model into a group (collection of models)
    cpp::Group group;
    group.setParam("geometry", cpp::CopiedData(model));
    group.commit();

    // put the group into an instance (give the group a world transform)
    cpp::Instance instance(group);
    instance.commit();

    cpp::World world;
    world.setParam("instance", cpp::CopiedData(instance));

    // Specify the region of the world this rank owns
    box3f regionBounds(
        vec3f(mpiRank, 0.f, 2.5f), vec3f(1.f * (mpiRank + 1.f), 1.f, 3.5f));
    world.setParam("region", cpp::CopiedData(regionBounds));

    world.commit();

    // create the mpi_raycast renderer (required for distributed rendering)
    cpp::Renderer renderer("mpiRaycast");
    renderer.commit();

    // create and setup framebuffer
    cpp::FrameBuffer framebuffer(imgSize.x,
        imgSize.y,
        OSP_FB_SRGBA,
        OSP_FB_COLOR | /*OSP_FB_DEPTH |*/ OSP_FB_ACCUM);
    framebuffer.clear();

    ospray::cpp::PickResult res =
        framebuffer.pick(renderer, camera, world, 0.5f, 0.5f);

    if (res.hasHit) {
      std::cout << "Rank " << mpiRank
                << " picked geometry [instance: " << res.instance.handle()
                << ", model: " << res.model.handle()
                << ", primitive: " << res.primID << "]" << std::endl;
    } else {
      std::cout << "Rank " << mpiRank << " pick missed" << std::endl;
    }

    // render one frame
    framebuffer.renderFrame(renderer, camera, world);

    // on rank 0, access framebuffer and write its content as PPM file
    if (mpiRank == 0) {
      uint32_t *fb = (uint32_t *)framebuffer.map(OSP_FB_COLOR);
      rkcommon::utility::writePPM(
          "firstFrameCpp.ppm", imgSize.x, imgSize.y, fb);
      framebuffer.unmap(fb);
    }

    // render 10 more frames, which are accumulated to result in a better
    // converged image
    for (int frames = 0; frames < 10; frames++)
      framebuffer.renderFrame(renderer, camera, world);

    if (mpiRank == 0) {
      uint32_t *fb = (uint32_t *)framebuffer.map(OSP_FB_COLOR);
      rkcommon::utility::writePPM(
          "accumulatedFrameCpp.ppm", imgSize.x, imgSize.y, fb);
      framebuffer.unmap(fb);
    }
  }

  ospShutdown();

  MPI_Finalize();

  return 0;
}