1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
// Copyright 2009 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
/* This is a small example tutorial how to use OSPRay and the
* MPIDistributedDevice in a data-parallel application.
* Each rank must specify the same render parameters, however the data
* to render on each rank can differ for distributed rendering. In this
* tutorial each rank renders a unique quad, which is colored by the rank.
*
* On Linux build it in the build_directory with:
* mpicxx ../modules/mpi/tutorials/ospMPIDistributedTutorial.cpp \
* -I ../ospray/include -I ../components \
* -L . -lospray -lospray_common -Wl,-rpath,. \
* -o ospMPIDistributedTutorialCpp
*
* Then run it with MPI on some number of processes
* mpirun -n <N> ./ospMPIDistributedTutorialCpp
*
* The output image should show a sequence of quads, from dark to light blue
*/
#include <errno.h>
#include <mpi.h>
#include <stdint.h>
#include <stdio.h>
#ifdef _WIN32
#define NOMINMAX
#include <malloc.h>
#else
#include <alloca.h>
#endif
#include "rkcommon/math/box.h"
#include "rkcommon/math/vec.h"
#include "rkcommon/utility/SaveImage.h"
#include "rkcommon/utility/getEnvVar.h"
// Note: we define OSPRAY_CPP_RKCOMMON_TYPES in CMAke to use rkcommon types
// natively through the C++ wrappers
#include "ospray/ospray_cpp.h"
#include "ospray/ospray_cpp/ext/rkcommon.h"
using namespace ospray;
using namespace rkcommon;
using namespace rkcommon::math;
int main(int argc, char **argv)
{
int mpiThreadCapability = 0;
MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &mpiThreadCapability);
if (mpiThreadCapability != MPI_THREAD_MULTIPLE
&& mpiThreadCapability != MPI_THREAD_SERIALIZED) {
fprintf(stderr,
"OSPRay requires the MPI runtime to support thread "
"multiple or thread serialized.\n");
return 1;
}
int mpiRank = 0;
int mpiWorldSize = 0;
MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank);
MPI_Comm_size(MPI_COMM_WORLD, &mpiWorldSize);
// image size
vec2i imgSize;
imgSize.x = 1024; // width
imgSize.y = 768; // height
// camera
vec3f cam_pos{(mpiWorldSize + 1.f) / 2.f, 0.5f, -mpiWorldSize * 0.5f};
vec3f cam_up{0.f, 1.f, 0.f};
vec3f cam_view{0.f, 0.f, 1.f};
// all ranks specify the same rendering parameters, with the exception of
// the data to be rendered, which is distributed among the ranks
// triangle mesh data
vec3f vertex[] = {vec3f(mpiRank, 0.0f, 3.5f),
vec3f(mpiRank, 1.0f, 3.0f),
vec3f(1.0f * (mpiRank + 1.f), 0.0f, 3.0f),
vec3f(1.0f * (mpiRank + 1.f), 1.0f, 2.5f)};
vec4f color[] = {vec4f(0.0f, 0.0f, (mpiRank + 1.f) / mpiWorldSize, 1.0f),
vec4f(0.0f, 0.0f, (mpiRank + 1.f) / mpiWorldSize, 1.0f),
vec4f(0.0f, 0.0f, (mpiRank + 1.f) / mpiWorldSize, 1.0f),
vec4f(0.0f, 0.0f, (mpiRank + 1.f) / mpiWorldSize, 1.0f)};
vec3ui index[] = {vec3ui(0, 1, 2), vec3ui(1, 2, 3)};
// load the MPI module, and select the MPI distributed device. Here we
// do not call ospInit, as we want to explicitly pick the distributed
// device
auto OSPRAY_MPI_DISTRIBUTED_GPU =
utility::getEnvVar<int>("OSPRAY_MPI_DISTRIBUTED_GPU").value_or(0);
if (OSPRAY_MPI_DISTRIBUTED_GPU) {
ospLoadModule("mpi_distributed_gpu");
} else {
ospLoadModule("mpi_distributed_cpu");
}
// use scoped lifetimes of wrappers to release everything before ospShutdown()
{
cpp::Device mpiDevice("mpiDistributed");
mpiDevice.commit();
mpiDevice.setCurrent();
// create and setup camera
cpp::Camera camera("perspective");
camera.setParam("aspect", imgSize.x / (float)imgSize.y);
camera.setParam("position", cam_pos);
camera.setParam("direction", cam_view);
camera.setParam("up", cam_up);
camera.commit(); // commit each object to indicate modifications are done
// create and setup model and mesh
cpp::Geometry mesh("mesh");
cpp::CopiedData data(vertex, 4);
data.commit();
mesh.setParam("vertex.position", data);
data = cpp::CopiedData(color, 4);
data.commit();
mesh.setParam("vertex.color", data);
data = cpp::CopiedData(index, 2);
data.commit();
mesh.setParam("index", data);
mesh.commit();
// put the mesh into a model
cpp::GeometricModel model(mesh);
model.commit();
// put the model into a group (collection of models)
cpp::Group group;
group.setParam("geometry", cpp::CopiedData(model));
group.commit();
// put the group into an instance (give the group a world transform)
cpp::Instance instance(group);
instance.commit();
cpp::World world;
world.setParam("instance", cpp::CopiedData(instance));
// Specify the region of the world this rank owns
box3f regionBounds(
vec3f(mpiRank, 0.f, 2.5f), vec3f(1.f * (mpiRank + 1.f), 1.f, 3.5f));
world.setParam("region", cpp::CopiedData(regionBounds));
world.commit();
// create the mpi_raycast renderer (required for distributed rendering)
cpp::Renderer renderer("mpiRaycast");
renderer.commit();
// create and setup framebuffer
cpp::FrameBuffer framebuffer(imgSize.x,
imgSize.y,
OSP_FB_SRGBA,
OSP_FB_COLOR | /*OSP_FB_DEPTH |*/ OSP_FB_ACCUM);
framebuffer.clear();
ospray::cpp::PickResult res =
framebuffer.pick(renderer, camera, world, 0.5f, 0.5f);
if (res.hasHit) {
std::cout << "Rank " << mpiRank
<< " picked geometry [instance: " << res.instance.handle()
<< ", model: " << res.model.handle()
<< ", primitive: " << res.primID << "]" << std::endl;
} else {
std::cout << "Rank " << mpiRank << " pick missed" << std::endl;
}
// render one frame
framebuffer.renderFrame(renderer, camera, world);
// on rank 0, access framebuffer and write its content as PPM file
if (mpiRank == 0) {
uint32_t *fb = (uint32_t *)framebuffer.map(OSP_FB_COLOR);
rkcommon::utility::writePPM(
"firstFrameCpp.ppm", imgSize.x, imgSize.y, fb);
framebuffer.unmap(fb);
}
// render 10 more frames, which are accumulated to result in a better
// converged image
for (int frames = 0; frames < 10; frames++)
framebuffer.renderFrame(renderer, camera, world);
if (mpiRank == 0) {
uint32_t *fb = (uint32_t *)framebuffer.map(OSP_FB_COLOR);
rkcommon::utility::writePPM(
"accumulatedFrameCpp.ppm", imgSize.x, imgSize.y, fb);
framebuffer.unmap(fb);
}
}
ospShutdown();
MPI_Finalize();
return 0;
}
|