1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
|
/*
** OSSP uuid - Universally Unique Identifier
** Copyright (c) 2004-2006 Ralf S. Engelschall <rse@engelschall.com>
** Copyright (c) 2004-2006 The OSSP Project <http://www.ossp.org/>
**
** This file is part of OSSP uuid, a library for the generation
** of UUIDs which can found at http://www.ossp.org/pkg/lib/uuid/
**
** Permission to use, copy, modify, and distribute this software for
** any purpose with or without fee is hereby granted, provided that
** the above copyright notice and this permission notice appear in all
** copies.
**
** THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
** WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
** MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHORS AND COPYRIGHT HOLDERS AND THEIR
** CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
** USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
** OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
** OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
** SUCH DAMAGE.
**
** uuid_sha1.c: SHA-1 API implementation
*/
#include <stdlib.h>
#include <string.h>
#include "config.h"
#include "uuid_sha1.h"
/*
* This is a RFC 3174 compliant Secure Hash Function (SHA-1) algorithm
* implementation. It is directly derived from the SHA-1 reference
* code published in RFC 3174 with just the following functionality
* preserving changes:
* - reformatted C style to conform with OSSP C style
* - added own OSSP style frontend API
* - added Autoconf based determination of sha1_uintX_t types
*/
/*
** ==== BEGIN RFC 3174 CODE ====
*/
/*
* This implements the Secure Hashing Algorithm 1 as defined in
* FIPS PUB 180-1 published April 17, 1995.
*
* The SHA-1, produces a 160-bit message digest for a given data
* stream. It should take about 2**n steps to find a message with the
* same digest as a given message and 2**(n/2) to find any two messages
* with the same digest, when n is the digest size in bits. Therefore,
* this algorithm can serve as a means of providing a "fingerprint" for
* a message.
*
* Caveats: SHA-1 is designed to work with messages less than 2^64 bits
* long. Although SHA-1 allows a message digest to be generated for
* messages of any number of bits less than 2^64, this implementation
* only works with messages with a length that is a multiple of the
* size of an 8-bit character.
*/
typedef unsigned char sha1_uint8_t;
#if SIZEOF_SHORT > 2
typedef short int sha1_int16plus_t;
#elif SIZEOF_INT > 2
typedef int sha1_int16plus_t;
#elif SIZEOF_LONG > 2
typedef long int sha1_int16plus_t;
#else
#error ERROR: unable to determine sha1_int16plus_t type (at least two byte word)
#endif
#if SIZEOF_UNSIGNED_SHORT == 4
typedef unsigned short int sha1_uint32_t;
#elif SIZEOF_UNSIGNED_INT == 4
typedef unsigned int sha1_uint32_t;
#elif SIZEOF_UNSIGNED_LONG == 4
typedef unsigned long int sha1_uint32_t;
#elif SIZEOF_UNSIGNED_LONG_LONG == 4
typedef unsigned long long int sha1_uint32_t;
#else
#error ERROR: unable to determine sha1_uint32_t type (four byte word)
#endif
enum {
shaSuccess = 0,
shaNull, /* null pointer parameter */
shaStateError /* called Input after Result */
};
#define SHA1HashSize 20
/* This structure will hold context information for the SHA-1 hashing operation */
typedef struct SHA1Context {
sha1_uint32_t Intermediate_Hash[SHA1HashSize/4]; /* Message Digest */
sha1_uint32_t Length_Low; /* Message length in bits */
sha1_uint32_t Length_High; /* Message length in bits */
sha1_int16plus_t Message_Block_Index; /* Index into message block array */
sha1_uint8_t Message_Block[64]; /* 512-bit message blocks */
int Computed; /* Is the digest computed? */
int Corrupted; /* Is the message digest corrupted? */
} SHA1Context;
/* Function Prototypes */
static int SHA1Reset (SHA1Context *);
static int SHA1Input (SHA1Context *, const sha1_uint8_t *, unsigned int);
static int SHA1Result (SHA1Context *, sha1_uint8_t Message_Digest[]);
/* Local Function Prototyptes */
static void SHA1PadMessage (SHA1Context *);
static void SHA1ProcessMessageBlock(SHA1Context *);
/* Define the SHA1 circular left shift macro */
#define SHA1CircularShift(bits,word) \
(((word) << (bits)) | ((word) >> (32-(bits))))
/*
* This function will initialize the SHA1Context in preparation for
* computing a new SHA1 message digest.
*/
static int SHA1Reset(SHA1Context *context)
{
if (context == NULL)
return shaNull;
context->Length_Low = 0;
context->Length_High = 0;
context->Message_Block_Index = 0;
context->Intermediate_Hash[0] = 0x67452301;
context->Intermediate_Hash[1] = 0xEFCDAB89;
context->Intermediate_Hash[2] = 0x98BADCFE;
context->Intermediate_Hash[3] = 0x10325476;
context->Intermediate_Hash[4] = 0xC3D2E1F0;
context->Computed = 0;
context->Corrupted = 0;
return shaSuccess;
}
/*
* This function will return the 160-bit message digest into the
* Message_Digest array provided by the caller. NOTE: The first octet
* of hash is stored in the 0th element, the last octet of hash in the
* 19th element.
*/
static int SHA1Result(SHA1Context *context, sha1_uint8_t Message_Digest[])
{
int i;
if (context == NULL || Message_Digest == NULL)
return shaNull;
if (context->Corrupted)
return context->Corrupted;
if (!context->Computed) {
SHA1PadMessage(context);
for (i = 0; i < 64; i++) {
/* message may be sensitive, clear it out */
context->Message_Block[i] = (sha1_uint8_t)0;
}
context->Length_Low = 0; /* and clear length */
context->Length_High = 0;
context->Computed = 1;
}
for (i = 0; i < SHA1HashSize; i++)
Message_Digest[i] = (sha1_uint8_t)(context->Intermediate_Hash[i>>2] >> (8 * (3 - (i & 0x03))));
return shaSuccess;
}
/*
* This function accepts an array of octets as the next portion of the
* message.
*/
static int SHA1Input(SHA1Context *context, const sha1_uint8_t *message_array, unsigned int length)
{
if (length == 0)
return shaSuccess;
if (context == NULL || message_array == NULL)
return shaNull;
if (context->Computed) {
context->Corrupted = shaStateError;
return shaStateError;
}
if (context->Corrupted)
return context->Corrupted;
while (length-- && !context->Corrupted) {
context->Message_Block[context->Message_Block_Index++] = (*message_array & 0xFF);
context->Length_Low += 8;
if (context->Length_Low == 0) {
context->Length_High++;
if (context->Length_High == 0)
context->Corrupted = 1; /* Message is too long */
}
if (context->Message_Block_Index == 64)
SHA1ProcessMessageBlock(context);
message_array++;
}
return shaSuccess;
}
/*
* This function will process the next 512 bits of the message stored
* in the Message_Block array. NOTICE: Many of the variable names in
* this code, especially the single character names, were used because
* those were the names used in the publication.
*/
static void SHA1ProcessMessageBlock(SHA1Context *context)
{
const sha1_uint32_t K[] = { /* Constants defined in SHA-1 */
0x5A827999,
0x6ED9EBA1,
0x8F1BBCDC,
0xCA62C1D6
};
int t; /* Loop counter */
sha1_uint32_t temp; /* Temporary word value */
sha1_uint32_t W[80]; /* Word sequence */
sha1_uint32_t A, B, C, D, E; /* Word buffers */
/* Initialize the first 16 words in the array W */
for (t = 0; t < 16; t++) {
W[t] = (sha1_uint32_t)(context->Message_Block[t * 4 ] << 24);
W[t] |= (sha1_uint32_t)(context->Message_Block[t * 4 + 1] << 16);
W[t] |= (sha1_uint32_t)(context->Message_Block[t * 4 + 2] << 8);
W[t] |= (sha1_uint32_t)(context->Message_Block[t * 4 + 3] );
}
for (t = 16; t < 80; t++)
W[t] = SHA1CircularShift(1, W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
A = context->Intermediate_Hash[0];
B = context->Intermediate_Hash[1];
C = context->Intermediate_Hash[2];
D = context->Intermediate_Hash[3];
E = context->Intermediate_Hash[4];
for (t = 0; t < 20; t++) {
temp = SHA1CircularShift(5, A) + ((B & C) | ((~B) & D)) + E + W[t] + K[0];
E = D;
D = C;
C = SHA1CircularShift(30, B);
B = A;
A = temp;
}
for (t = 20; t < 40; t++) {
temp = SHA1CircularShift(5, A) + (B ^ C ^ D) + E + W[t] + K[1];
E = D;
D = C;
C = SHA1CircularShift(30, B);
B = A;
A = temp;
}
for (t = 40; t < 60; t++) {
temp = SHA1CircularShift(5, A) + ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2];
E = D;
D = C;
C = SHA1CircularShift(30, B);
B = A;
A = temp;
}
for (t = 60; t < 80; t++) {
temp = SHA1CircularShift(5, A) + (B ^ C ^ D) + E + W[t] + K[3];
E = D;
D = C;
C = SHA1CircularShift(30, B);
B = A;
A = temp;
}
context->Intermediate_Hash[0] += A;
context->Intermediate_Hash[1] += B;
context->Intermediate_Hash[2] += C;
context->Intermediate_Hash[3] += D;
context->Intermediate_Hash[4] += E;
context->Message_Block_Index = 0;
return;
}
/*
* According to the standard, the message must be padded to an even
* 512 bits. The first padding bit must be a '1'. The last 64 bits
* represent the length of the original message. All bits in between
* should be 0. This function will pad the message according to those
* rules by filling the Message_Block array accordingly. It will also
* call the ProcessMessageBlock function provided appropriately. When
* it returns, it can be assumed that the message digest has been
* computed.
*/
static void SHA1PadMessage(SHA1Context *context)
{
/* Check to see if the current message block is too small to hold
the initial padding bits and length. If so, we will pad the block,
process it, and then continue padding into a second block. */
if (context->Message_Block_Index > 55) {
context->Message_Block[context->Message_Block_Index++] = (sha1_uint8_t)0x80;
while (context->Message_Block_Index < 64)
context->Message_Block[context->Message_Block_Index++] = (sha1_uint8_t)0;
SHA1ProcessMessageBlock(context);
while(context->Message_Block_Index < 56)
context->Message_Block[context->Message_Block_Index++] = (sha1_uint8_t)0;
}
else {
context->Message_Block[context->Message_Block_Index++] = (sha1_uint8_t)0x80;
while(context->Message_Block_Index < 56)
context->Message_Block[context->Message_Block_Index++] = (sha1_uint8_t)0;
}
/* Store the message length as the last 8 octets */
context->Message_Block[56] = (sha1_uint8_t)(context->Length_High >> 24);
context->Message_Block[57] = (sha1_uint8_t)(context->Length_High >> 16);
context->Message_Block[58] = (sha1_uint8_t)(context->Length_High >> 8);
context->Message_Block[59] = (sha1_uint8_t)(context->Length_High );
context->Message_Block[60] = (sha1_uint8_t)(context->Length_Low >> 24);
context->Message_Block[61] = (sha1_uint8_t)(context->Length_Low >> 16);
context->Message_Block[62] = (sha1_uint8_t)(context->Length_Low >> 8);
context->Message_Block[63] = (sha1_uint8_t)(context->Length_Low );
SHA1ProcessMessageBlock(context);
return;
}
/*
** ==== END RFC 3174 CODE ====
*/
struct sha1_st {
SHA1Context ctx;
};
sha1_rc_t sha1_create(sha1_t **sha1)
{
if (sha1 == NULL)
return SHA1_RC_ARG;
if ((*sha1 = (sha1_t *)malloc(sizeof(sha1_t))) == NULL)
return SHA1_RC_MEM;
if (SHA1Reset(&((*sha1)->ctx)) != shaSuccess)
return SHA1_RC_INT;
return SHA1_RC_OK;
}
sha1_rc_t sha1_init(sha1_t *sha1)
{
if (sha1 == NULL)
return SHA1_RC_ARG;
if (SHA1Reset(&(sha1->ctx)) != shaSuccess)
return SHA1_RC_INT;
return SHA1_RC_OK;
}
sha1_rc_t sha1_update(sha1_t *sha1, const void *data_ptr, size_t data_len)
{
if (sha1 == NULL)
return SHA1_RC_ARG;
if (SHA1Input(&(sha1->ctx), (unsigned char *)data_ptr, (unsigned int)data_len) != shaSuccess)
return SHA1_RC_INT;
return SHA1_RC_OK;
}
sha1_rc_t sha1_store(sha1_t *sha1, void **data_ptr, size_t *data_len)
{
SHA1Context ctx;
if (sha1 == NULL || data_ptr == NULL)
return SHA1_RC_ARG;
if (*data_ptr == NULL) {
if ((*data_ptr = malloc(SHA1_LEN_BIN)) == NULL)
return SHA1_RC_MEM;
if (data_len != NULL)
*data_len = SHA1_LEN_BIN;
}
else {
if (data_len != NULL) {
if (*data_len < SHA1_LEN_BIN)
return SHA1_RC_MEM;
*data_len = SHA1_LEN_BIN;
}
}
memcpy((void *)(&ctx), (void *)(&(sha1->ctx)), sizeof(SHA1Context));
if (SHA1Result(&(ctx), (unsigned char *)(*data_ptr)) != shaSuccess)
return SHA1_RC_INT;
return SHA1_RC_OK;
}
sha1_rc_t sha1_format(sha1_t *sha1, char **data_ptr, size_t *data_len)
{
static const char hex[] = "0123456789abcdef";
unsigned char buf[SHA1_LEN_BIN];
unsigned char *bufptr;
size_t buflen;
sha1_rc_t rc;
int i;
if (sha1 == NULL || data_ptr == NULL)
return SHA1_RC_ARG;
if (*data_ptr == NULL) {
if ((*data_ptr = (char *)malloc(SHA1_LEN_STR+1)) == NULL)
return SHA1_RC_MEM;
if (data_len != NULL)
*data_len = SHA1_LEN_STR+1;
}
else {
if (data_len != NULL) {
if (*data_len < SHA1_LEN_STR+1)
return SHA1_RC_MEM;
*data_len = SHA1_LEN_STR+1;
}
}
bufptr = buf;
buflen = sizeof(buf);
if ((rc = sha1_store(sha1, (void **)((void *)&bufptr), &buflen)) != SHA1_RC_OK)
return rc;
for (i = 0; i < (int)buflen; i++) {
(*data_ptr)[(i*2)+0] = hex[(int)(bufptr[i] >> 4)];
(*data_ptr)[(i*2)+1] = hex[(int)(bufptr[i] & 0x0f)];
}
(*data_ptr)[(i*2)] = '\0';
return SHA1_RC_OK;
}
sha1_rc_t sha1_destroy(sha1_t *sha1)
{
if (sha1 == NULL)
return SHA1_RC_ARG;
free(sha1);
return SHA1_RC_OK;
}
|