File: splay.ml

package info (click to toggle)
otags 3.09.3-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 280 kB
  • ctags: 279
  • sloc: ml: 995; sh: 464; makefile: 147
file content (379 lines) | stat: -rw-r--r-- 12,260 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
(* (C) 1999-2004                                                 *)
(* Cuihtlauac Alvarado, France Telecon, Recherche & Developement *)
(* Jean-Franois Monin, Universit Joseph Fourier - VERIMAG      *)

(* $Id: splay.ml,v 1.3 2007-03-15 22:40:43 tews Exp $ *)

(* ocamlc options: !-pp camlp4o!*)
(* ocamldep options: !-pp camlp4o!*)

(* dcell mutable, parcours fermeture clair *)

let id x = x
let (@@) g f = fun x -> g (f x)

module type InhabitedType = sig
  type t
  val default : t
end

module type InhabitedOrderedType = sig
  type t
  val default : t
  val compare : t -> t -> int
end

module type S = sig
  type key
  type vt
  type t
  exception Already_there
  val print : (key -> unit) -> (vt -> unit) -> t -> unit
  val create: unit -> t
  val clear:  t -> unit
  val min_elt: t -> key * vt
  val max_elt: t -> key * vt
  val find: t -> key -> vt
  val mem: t -> key -> bool
  val add: t -> key -> vt -> unit
  val remove: t -> key -> unit
  val set: t -> key -> vt -> unit
  val sub: t -> key -> key -> t
  val from: t -> key -> t
  val floor: t -> key -> key * vt
  val ceil: t -> key -> key * vt
  val prev: t -> key -> key * vt
  val next: t -> key -> key * vt
    (* functions without side effect on the tree *)
  val copy: t -> t
  val iter: (key -> vt -> unit) -> t -> unit
  val fold_left: ('b -> key -> vt -> 'b) -> 'b -> t -> 'b
  val fold_right: (key -> vt -> 'b -> 'b) -> t -> 'b -> 'b
  val cardinal: t -> int
  val is_empty: t -> bool
  val to_list : t -> (key * vt) list
  val to_stream : t -> (key * vt) Stream.t
  val filter: (key -> vt -> bool) -> t ->  t
end (* S *)

module Make(Ord: InhabitedOrderedType) (Val: InhabitedType) = struct
  type key = Ord.t
  type vt = Val.t

  type cell = 
      {mutable lft : tree; c : key; mutable v : vt; mutable rgt : tree}

  and tree  = Empty | Node of cell

  (* env = arbre crois et avec une valeur racine bidon  *)
  (* env.lft sert de continuation  droite et inversement, d'o le croisement *)
  (* NOT THREAD SAFE : need a mutex *)
  let any_c () : key = Ord.default
  let any_v () : vt = Val.default

  type t = { mutable data : tree;
             env : cell }

  let env_init () = {lft=Empty; c=any_c (); v=any_v (); rgt=Empty}

  let create () =
    { data = Empty; env = env_init () }

  let clear_env t = t.env.lft <- Empty; t.env.rgt <- Empty
  let clear t =
    t.data <- Empty;
    clear_env t

  let rec copy_t = function
    | Empty -> Empty
    | Node(a) -> Node({lft=copy_t a.lft; c=a.c; v=a.v; rgt=copy_t a.rgt})

  let rec depth = function
    | Empty -> 0
    | Node(a) -> max (depth a.lft) (depth a.rgt) + 1

  let print prk pr_el t = 
    let pr_elt x y = prk x; print_char ','; pr_el y in
    let ps = print_string in
    let rec pr = function
      | Empty -> ()
      | Node({lft = a; c = c; v = u; rgt = b}) -> match a,b with
          | Empty,Empty -> pr_elt c u
          | Empty,b -> ps "("; pr_elt c u; ps " > "; pr b; ps ")"
          | a,Empty -> ps "(";pr a; ps " < "; pr_elt c u; ps ")"
          | a,b -> ps "(";pr a; ps " < "; pr_elt c u; ps " > "; pr b; ps ")"
    in pr t.data; print_newline(); flush stdout
      
  (* debugging with integer keys *)
  let dbg_print s t = 
    let pr_elt x y = print_int (Obj.magic x) in
    let ps = print_string in
    let rec pr = function
      | Empty -> ()
      | Node({lft = a; c = c; v = u; rgt = b}) -> match a,b with
          | Empty,Empty -> pr_elt c u
          | Empty,b -> ps "("; pr_elt c u; ps " > "; pr b; ps ")"
          | a,Empty -> ps "(";pr a; ps " < "; pr_elt c u; ps ")"
          | a,b -> ps "(";pr a; ps " < "; pr_elt c u; ps " > "; pr b; ps ")" in
    let prt s t = Printf.printf "%s = " s; pr t in
    Printf.printf "[%s] " s; prt "data" t.data;
    prt "\nlft" t.env.rgt; prt "\nrgt" t.env.lft;
    print_newline(); flush stdout
      

  (* WARNING : pred (i.e. Ord.compare_XXX) must not raise any exception *)
  (* kl et kr contiennent le pre de celui qui bouge *)
  (* general version of traverse *)
  let gen_trav pred root fem feq =
    clear_env root;
    let rec trav t kl kr =
      match t with
        | Empty -> fem root kl kr
        | Node({lft=l; c=u; rgt=r} as ct) -> let c = pred l u r in
          if c = 0 then
            (kl.rgt<-l; kr.lft<-r; ct.lft<-root.env.rgt; ct.rgt<-root.env.lft;
             root.data <- t; feq ct)
          else if c < 0 then 
            match l with
              | Empty -> (kr.lft <- t; trav l kl ct)
              | Node({lft=ll; c=v; rgt=lr} as cl) -> let c = pred ll v lr in
                if c = 0 then (kr.lft <- t; trav l kl ct)
                else if c < 0 then (kr.lft<-l; ct.lft<-lr; cl.rgt<-t; trav ll kl cl)
                else (kl.rgt<-l; kr.lft<- t; trav lr cl ct)
          else
            match r with
              | Empty -> (kl.rgt <- t; trav r ct kr)
              | Node({lft=rl; c=v; rgt=rr} as cr) -> let c = pred rl v rr in
                if c = 0 then (kl.rgt <- t; trav r ct kr)
                else if c < 0 then (kl.rgt<-t; kr.lft <- r; trav rl ct cr)
                else (kl.rgt<-r; ct.rgt<-rl; cr.lft<-t; trav rr cr kr)
    in trav root.data root.env root.env
  let trav_cmp x = gen_trav (fun _ u _ -> Ord.compare x u)
                     (* inlining of compare -> only 10 % better *)
  let trav_cmp x root fem feq =
    clear_env root;
    let rec trav t kl kr =
      match t with
        | Empty -> fem root kl kr
        | Node({lft=l; c=u; rgt=r} as ct) -> let c = Ord.compare x u in
          if c = 0 then
            (kl.rgt<-l; kr.lft<-r; ct.lft<-root.env.rgt; ct.rgt<-root.env.lft;
             root.data <- t; feq ct)
          else if c < 0 then 
            match l with
              | Empty -> (kr.lft <- t; trav l kl ct)
              | Node({lft=ll; c=v; rgt=lr} as cl) -> let c = Ord.compare x v in
                if c = 0 then (kr.lft <- t; trav l kl ct)
                else if c < 0 then (kr.lft<-l; ct.lft<-lr; cl.rgt<-t; trav ll kl cl)
                else (kl.rgt<-l; kr.lft<- t; trav lr cl ct)
          else
            match r with
              | Empty -> (kl.rgt <- t; trav r ct kr)
              | Node({lft=rl; c=v; rgt=rr} as cr) -> let c = Ord.compare x v in
                if c = 0 then (kl.rgt <- t; trav r ct kr)
                else if c < 0 then (kl.rgt<-t; kr.lft <- r; trav rl ct cr)
                else (kl.rgt<-r; ct.rgt<-rl; cr.lft<-t; trav rr cr kr)
    in trav root.data root.env root.env
  let rescue_find root kl kr =
    if kl.rgt = Empty
    then (kr.lft <- root.env.rgt; root.data <- root.env.lft; raise Not_found)
    else (kl.rgt <- root.env.lft; root.data <- root.env.rgt; raise Not_found)
  let internal_find t x =
    trav_cmp x t rescue_find id
  let find t x =
    trav_cmp x t rescue_find (fun n -> n.v)
  let rescue_mem root kl kr =
    if kl.rgt = Empty
    then (kr.lft <- root.env.rgt; root.data <- root.env.lft; false)
    else (kl.rgt <- root.env.lft; root.data <- root.env.rgt; false)
  let resu_mem n = true
  let mem t x =
    trav_cmp x t rescue_mem resu_mem

  let go_left l u r = if l = Empty then 0 else -1
  let internal_min t cont =
    gen_trav go_left t rescue_find cont

  let go_right l u r = if r = Empty then 0 else 1
  let internal_max t cont =
    gen_trav go_right t rescue_find cont

  let min_elt t =
    let n = internal_min t id in n.c,n.v

  let max_elt t =
    let n =  internal_max t id in n.c,n.v

  let resu_add c v root kl kr =
    (kl.rgt<-Empty; kr.lft<-Empty;
     root.data <- Node({lft=root.env.rgt; c=c; v=v; rgt=root.env.lft}))

  exception Already_there
  let add t c x =
    let rescue_add n = raise Already_there in
    trav_cmp c t (resu_add c x) rescue_add

  let set t c x =
    let really_set n = n.v <- x in
    trav_cmp c t (resu_add c x) really_set

  let remove t x =
    let n = internal_find t x in
    if n.lft = Empty then t.data <- n.rgt
    else begin
      let exrgt = n.rgt in 
      t.data <- n.lft;
      let cl = internal_max t id in cl.rgt <- exrgt
    end

  let split t c cont_resc cont_ok =
    let rescue_split root kl kr =
      kl.rgt<-Empty; kr.lft<-Empty; cont_resc root in
    trav_cmp c t rescue_split cont_ok

  (* Ensures that if [floor t c = c1,_] and [ceil t c = c2,_]        *)
  (* then repeated calls to [floor t c] make [c2] at the root of     *)
  (* the right subtree of [t] (and similarly for [ceil t c and c1])  *)
  let up_neighbours t =
    if not (t.env.rgt = Empty) then
      begin
        let exrgt = t.env.lft in
        t.data <- t.env.rgt; internal_max t (fun x -> ());
        t.env.rgt <- t.data; t.env.lft <- exrgt
      end;
    if not (t.env.lft = Empty) then
      begin
        let exlft = t.env.rgt in
        t.data <- t.env.lft; internal_min t (fun x -> ());
        t.env.lft <- t.data; t.env.rgt <- exlft
      end
      
  let cont_floor t =
    up_neighbours t;
    let exlft = t.env.rgt and exrgt = t.env.lft in
    match exlft with
      | Empty -> t.data <- exrgt; raise Not_found
      | Node cl -> cl.rgt <- exrgt; t.data <- exlft; cl

  let floor t c =
    let n = split t c cont_floor id in n.c,n.v

  let cont_ceil t =
    up_neighbours t;
    let exlft = t.env.rgt and exrgt = t.env.lft in
    match exrgt with
      | Empty -> t.data <- exlft; raise Not_found
      | Node cl -> cl.lft <- exlft; t.data <- exrgt; cl

  let ceil t c =
    let n = split t c cont_ceil id in n.c,n.v

  let cont_prev t n = 
    let exdata = t.data in (* t.data = Node n *)
    let exlft = n.lft in 
    n.lft <- Empty;
    if exlft = Empty then raise Not_found
    else
      (t.data <- exlft;
       let cl = internal_max t id in cl.rgt <- exdata; cl)

  let prev t c =
    let n = split t c cont_floor (cont_prev t) in n.c,n.v

  let cont_next t n = 
    let exdata = t.data in (* t.data = Node n *)
    let exrgt = n.rgt in 
    n.rgt <- Empty;
    if exrgt = Empty then raise Not_found
    else
      (t.data <- exrgt;
       let cl = internal_min t id in cl.lft <- exdata; cl)

  let next t c =
    let n = split t c cont_ceil (cont_next t) in n.c,n.v

  let sub t c1 c2 =
    let left_c2 () =
      let src =
        try let n2 = split t c2 cont_ceil id in n2.lft (* t.data = Node n2 *)
        with Not_found -> t.data in
      { data = copy_t src; env = env_init () } in
    try 
      let n1 = split t c1 cont_floor (cont_prev t) in
      let exdata1 = t.data in (* t.data = Node n1 *)
      t.data <- n1.rgt;
      let resu = left_c2 () in
      n1.rgt <- t.data; t.data <- exdata1;
      resu
    with Not_found -> left_c2 ()

  let from t c1 =
    try 
      let n1 = split t c1 cont_floor (cont_prev t) in
      { data = copy_t n1.rgt; env = env_init () }
    with Not_found -> { data = copy_t t.data; env = env_init () }

  (* functions without side effect on the tree *)

  let copy t = { data = copy_t t.data; env = env_init () }

  let iter f t = 
    let rec iterf = function
      | Empty -> ()
      | Node(a) -> iterf a.lft; f a.c a.v; iterf a.rgt
    in iterf t.data

  let fold t f = 
    let rec foldf = function
      | Empty -> id
      | Node(a) -> foldf a.lft @@ f a.c a.v @@ foldf a.rgt
    in foldf t.data

  let fold_right f t b = 
    let rec foldr b = function
      | Empty -> b
      | Node(a) -> foldr (f a.c a.v (foldr b a.rgt)) a.lft
    in foldr b t.data

  let fold_left f b t = 
    let rec foldl b = function
      | Empty -> b
      | Node(a) ->
          let fl = foldl b a.lft in
          let fcv = f fl a.c a.v in foldl fcv a.rgt
    in foldl b t.data

  let cardinal t = fold_right (fun c v x -> x+1) t 0

  let is_empty t =
    let rec aux = function
      | Empty -> true
      | Node(_) -> false
    in aux t.data

  let to_list t =
    let cons x y l = (x,y)::l in fold_right cons t []

  let to_stream t =
    let cons s x y = [< s; 'x,y >] in fold_left cons [<>] t

  let filter p t =
    let rec aux x = function
      | Empty -> x
      | Node a ->
          let fl = aux x a.lft in
          if p a.c a.v then 
            Node({lft = fl; c = a.c; v = a.v; rgt = aux Empty a.rgt})
          else aux fl a.rgt in
    { data = aux Empty t.data; env = env_init () }
    
(*
  let map f t =
  let rec aux = function
  | Empty -> Empty
  | Node a ->
  Node {lft = aux a.lft; c = a.c; v = f a.c a.v; rgt = aux a.rgt} in
  { data = aux t.data; env = env_init () }
*)

end (* Make *)