1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
/*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {qb_RoadExtract.tif}
// OUTPUTS: {RoadExtractBandMath.tif}, {qb_BandMath-pretty.jpg}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This filter is based on the mathematical parser library muParser.
// The built in functions and operators list is available at:
// \url{http://muparser.sourceforge.net/mup_features.html}.
//
// In order to use this filter, at least one input image is to be
// set. An associated variable name can be specified or not by using
// the corresponding SetNthInput method. For the nth input image, if
// no associated variable name has been specified, a default variable
// name is given by concatenating the letter "b" (for band) and the
// corresponding input index.
//
// The next step is to set the expression according to the variable
// names. For example, in the default case with three input images the
// following expression is valid : "(b1+b2)*b3".
//
// Software Guide : EndLatex
#include "itkMacro.h"
#include <iostream>
#include "otbImage.h"
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkCastImageFilter.h"
#include "otbVectorImageToImageListFilter.h"
// Software Guide : BeginLatex
//
// We start by including the needed header file.
// The aim of this example is to compute the Normalized Difference Vegetation Index (NDVI)
// from a multispecral image and perform a threshold on this
// indice to extract area containing a dense vegetation canopy.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "otbBandMathImageFilter.h"
// Software Guide : EndCodeSnippet
int main( int argc, char* argv[])
{
if (argc != 4)
{
std::cerr << "Usage: " << argv[0] << " inputImageFile ";
std::cerr << " outputImageFile ";
std::cerr << " outputPrettyImageFile" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We start by the classical \code{typedef}s needed for reading and
// writing the images. The \doxygen{otb}{BandMathImageFilter} class
// works with \doxygen{otb}{Image} as input so we need to define additional
// filters to extract each layer of the multispectral image
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef double PixelType;
typedef otb::VectorImage<PixelType, 2> InputImageType;
typedef otb::Image<PixelType, 2> OutputImageType;
typedef otb::ImageList<OutputImageType> ImageListType;
typedef otb::VectorImageToImageListFilter<InputImageType, ImageListType>
VectorImageToImageListType;
typedef otb::ImageFileReader<InputImageType> ReaderType;
typedef otb::ImageFileWriter<OutputImageType> WriterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now define the type for the filter:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::BandMathImageFilter<OutputImageType> FilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We instantiate the filter, the reader, and the writer:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
FilterType::Pointer filter = FilterType::New();
writer->SetInput(filter->GetOutput());
reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);
// Software Guide : EndCodeSnippet
reader->UpdateOutputInformation();
// Software Guide : BeginLatex
//
// We need now to extract now each band from the input \doxygen{otb}{VectorImage},
// it illustrates the use of the \doxygen{otb}{VectorImageToImageList}.
// Each extracted layer are inputs of the \doxygen{otb}{BandMathImageFilter}:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
VectorImageToImageListType::Pointer imageList = VectorImageToImageListType::New();
imageList->SetInput(reader->GetOutput());
imageList->UpdateOutputInformation();
const unsigned int nbBands = reader->GetOutput()->GetNumberOfComponentsPerPixel();
for(unsigned int j = 0; j < nbBands; ++j)
{
filter->SetNthInput(j, imageList->GetOutput()->GetNthElement(j));
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now we can define the mathematical expression to perform on the layers (b1, b2, b3, b4).
// The filter takes advantage of the parsing capabilities of the muParser library and
// allows setting the expression as on a digital calculator.
//
// The expression below returns 255 if the ratio $(NIR-RED)/(NIR+RED)$ is greater than 0.4 and 0 if not.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetExpression("if((b4-b3)/(b4+b3) > 0.4, 255, 0)");
#ifdef OTB_MUPARSER_HAS_CXX_LOGICAL_OPERATORS
filter->SetExpression("((b4-b3)/(b4+b3) > 0.4) ? 255 : 0");
#else
filter->SetExpression("if((b4-b3)/(b4+b3) > 0.4, 255, 0)");
#endif
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now plug the pipeline and run it.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
writer->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The muParser library offers also the possibility to extended existing built-in functions. For example,
// you can use the OTB expression "ndvi(b3, b4)" with the filter. The mathematical expression would be in
// this case \textit{if($ndvi(b3, b4)>0.4$, 255, 0)}. It will return the same result.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// Figure~\ref{fig:BandMathImageFilter} shows the result of the threshold over the NDVI indice
// to a Quickbird image.
// \begin{figure}
// \center
// \includegraphics[width=0.45\textwidth]{qb_ExtractRoad_pretty.eps}
// \includegraphics[width=0.45\textwidth]{qb_BandMath-pretty.eps}
// \itkcaption[Band Math]{From left to right:
// Original image, thresholded NDVI indice.}
// \label{fig:BandMathImageFilter}
// \end{figure}
//
// Software Guide : EndLatex
typedef otb::Image<unsigned char, 2> OutputPrettyImageType;
typedef otb::ImageFileWriter<OutputPrettyImageType> PrettyImageFileWriterType;
typedef itk::CastImageFilter<OutputImageType, OutputPrettyImageType> CastImageFilterType;
PrettyImageFileWriterType::Pointer prettyWriter = PrettyImageFileWriterType::New();
CastImageFilterType::Pointer caster = CastImageFilterType::New();
caster->SetInput(filter->GetOutput());
prettyWriter->SetInput(caster->GetOutput());
prettyWriter->SetFileName(argv[3]);
prettyWriter->Update();
return EXIT_SUCCESS;
}
|