1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
/*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {IMAGERY_SSECH.tif}
// OUTPUTS: {PrintableExampleOutput1.jpg}
// 1 2 3
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {IMAGERY_SSECH.tif}
// OUTPUTS: {PrintableExampleOutput2.jpg}
// 1 4 2
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// Most of the time, satellite images have more than three spectral bands. As we
// are only able to see three colors (red, green and blue), we have to find a way to
// represent these images using only three bands. This is called creating a color
// composition.
//
// Of course, any color composition will not be able to render all the information
// available in the original image. As a consequence, sometimes, creating more than
// one color composition will be necessary.
//
// If you want to obtain an image with natural colors, you have to match the wavelength
// captured by the satellite with those captured by your eye: thus matching the red band
// with the red color, etc.
//
// Some satellites (SPOT 5 is an example) do not acquire all the {\em human} spectral bands:
// the blue can be missing and replaced by some other wavelength of interest for a specific application.
// In these situations, another mapping has to be created. That's why, the vegetation often appears in
// red in satellite images (see on left of figure~\ref{fig:PRINTABLE_FILTER}).
//
// The band order in the image products can be also quite tricky. It could be in the wavelength order,
// as it is the case for Quickbird (1: Blue, 2: Green, 3: Red, 4: NIR), in this case, you
// have to be careful to reverse the order if you want a natural display. It could also be reverse
// to facilitate direct viewing, as for SPOT5 (1: NIR, 2: Red, 3: Green, 4: SWIR) but in this situations
// you have to be careful when you process the image.
//
// Software Guide : EndLatex
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbPrintableImageFilter.h"
int main(int argc, char * argv[])
{
if (argc != 6)
{
std::cerr << "Usage: " << argv[0] << " <inputImageFile> ";
std::cerr << " <outputImageFile> <RedBand> <GreenBand> <BlueBand>" <<
std::endl;
return EXIT_FAILURE;
}
const char * inputFilename = argv[1];
const char * outputFilename = argv[2];
int redChannelNumber = atoi(argv[3]);
int greenChannelNumber = atoi(argv[4]);
int blueChannelNumber = atoi(argv[5]);
typedef double InputPixelType;
const unsigned int Dimension = 2;
typedef otb::VectorImage<InputPixelType, Dimension> InputImageType;
typedef otb::ImageFileReader<InputImageType> ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputFilename);
// Software Guide : BeginLatex
//
// To easily convert the image to a {\em printable} format, i.e. 3 bands
// \code{unsigned char} value, you can use the \doxygen{otb}{PrintableImageFilter}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::PrintableImageFilter<InputImageType> PrintableFilterType;
PrintableFilterType::Pointer printableImageFilter = PrintableFilterType::New();
printableImageFilter->SetInput(reader->GetOutput());
printableImageFilter->SetChannel(redChannelNumber);
printableImageFilter->SetChannel(greenChannelNumber);
printableImageFilter->SetChannel(blueChannelNumber);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// When you create the writer to plug at the output of the \code{printableImageFilter}
// you may want to use the direct type definition as it is a good way to avoid mismatch:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef PrintableFilterType::OutputImageType OutputImageType;
typedef otb::ImageFileWriter<OutputImageType> WriterType;
// Software Guide : EndCodeSnippet
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(outputFilename);
writer->SetInput(printableImageFilter->GetOutput());
writer->Update();
// Software Guide : BeginLatex
// Figure~\ref{fig:PRINTABLE_FILTER} illustrates different color compositions for a SPOT 5 image.
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{PrintableExampleOutput1.eps}
// \includegraphics[width=0.44\textwidth]{PrintableExampleOutput2.eps}
// \itkcaption[Scaling images]{On the left, a classic SPOT5
// combination: XS3 in red, XS2 in green and XS1 in blue. On the
// right another composition: XS3 in red, XS4 in green and XS2 in blue.}
// \label{fig:PRINTABLE_FILTER}
// \end{figure}
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|