File: ChangeDetectionFrameworkExample.cxx

package info (click to toggle)
otb 5.8.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,496 kB
  • ctags: 40,282
  • sloc: cpp: 306,573; ansic: 3,575; python: 450; sh: 214; perl: 74; java: 72; makefile: 70
file content (274 lines) | stat: -rw-r--r-- 9,021 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/


// Software Guide : BeginLatex
//
// This example illustrates the Change Detector framework implemented
// in OTB. This framework uses the generic programming approach. All
// change detection filters are
// \doxygen{otb}{BinaryFunctorNeighborhoodImageFilter}s, that is, they
// are filters taking two images as input and providing one image as
// output. The change detection computation itself is performed on a
// the neighborhood of each pixel of the input images.
//
// The first step required to build a change detection filter is to
// include the header of the parent class.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "otbBinaryFunctorNeighborhoodImageFilter.h"
// Software Guide : EndCodeSnippet

#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbImage.h"
#include "otbCommandProgressUpdate.h"

// Software Guide : BeginLatex
//
// The change
// detection operation itself is one of the templates of the change
// detection filters and takes the form of a function, that is,
// something accepting the syntax \code{foo()}. This can be
// implemented using classical C/C++ functions, but it is preferable
// to implement it using C++ functors. These are classical C++ classes
// which overload the \code{()} operator. This allows using them with
// the same syntax as C/C++ functions.
//
// Since change detectors operate on neighborhoods, the functor
// call will take 2 arguments which are
// \doxygen{itk}{ConstNeighborhoodIterator}s.
//
// The change detector functor is templated over the types of the
// input iterators and the output result type. The core of the change
// detection is implemented in the \code{operator()} section.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
template<class TInput1, class TInput2, class TOutput>
class MyChangeDetector
{
public:
  // The constructor and destructor.
  MyChangeDetector() {}
  ~MyChangeDetector() {}
  // Change detection operation
  inline TOutput operator ()(const TInput1& itA,
                             const TInput2& itB)
  {

    TOutput result = 0.0;

    for (unsigned long pos = 0; pos < itA.Size(); ++pos)
      {

      result += static_cast<TOutput>(itA.GetPixel(pos) - itB.GetPixel(pos));

      }
    return static_cast<TOutput>(result / itA.Size());
  }
};
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// The interest of using functors is that complex operations can be
// performed using internal \code{protected} class methods and that
// class variables can be used to store information so different pixel
// locations can access to results of previous computations.
//
// The next step is the definition of the change detector filter. As
// stated above, this filter will inherit from
// \doxygen{otb}{BinaryFunctorNeighborhoodImageFilter} which is
// templated over the 2 input image types, the output image type and
// the functor used to perform the change detection operation.
//
// Inside the class only a few \code{typedef}s and the constructors
// and destructors have to be declared.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
template <class TInputImage1, class TInputImage2, class TOutputImage>
class ITK_EXPORT MyChangeDetectorImageFilter :
  public otb::BinaryFunctorNeighborhoodImageFilter<
      TInputImage1, TInputImage2, TOutputImage,
      MyChangeDetector<
          typename itk::ConstNeighborhoodIterator<TInputImage1>,
          typename itk::ConstNeighborhoodIterator<TInputImage2>,
          typename TOutputImage::PixelType> >
{
public:
  /** Standard class typedefs. */
  typedef MyChangeDetectorImageFilter Self;

  typedef typename otb::BinaryFunctorNeighborhoodImageFilter<
      TInputImage1, TInputImage2, TOutputImage,
      MyChangeDetector<
          typename itk::ConstNeighborhoodIterator<TInputImage1>,
          typename itk::ConstNeighborhoodIterator<TInputImage2>,
          typename TOutputImage::PixelType>
      >  Superclass;

  typedef itk::SmartPointer<Self>       Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

protected:
  MyChangeDetectorImageFilter() {}
  ~MyChangeDetectorImageFilter() ITK_OVERRIDE {}

private:
  MyChangeDetectorImageFilter(const Self &); //purposely not implemented
  void operator =(const Self&); //purposely not implemented

};
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// Pay attention to the fact that no \code{.txx} file is needed, since
// filtering operation is implemented in the
// \doxygen{otb}{BinaryFunctorNeighborhoodImageFilter} class. So all
// the algorithmics part is inside the functor.
//
// We can now write a program using the change detector.
//
// SoftwareGuide : EndLatex

int main(int argc, char* argv[])
{

  if (argc < 5)
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] <<
    " inputImageFile1 inputImageFile2  radius outputImageFile " << std::endl;
    return -1;
    }

  // Define the dimension of the images
  const unsigned int Dimension = 2;

  // Software Guide : BeginLatex
  //
  // As usual, we start by defining the image types. The internal
  // computations will be performed with floating point precision,
  // while the output image will be stored using one byte per pixel.
  //
  // SoftwareGuide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef float                                    InternalPixelType;
  typedef unsigned char                            OutputPixelType;
  typedef otb::Image<InternalPixelType, Dimension> InputImageType1;
  typedef otb::Image<InternalPixelType, Dimension> InputImageType2;
  typedef otb::Image<InternalPixelType, Dimension> ChangeImageType;
  typedef otb::Image<OutputPixelType, Dimension>   OutputImageType;
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // We declare the readers, the writer, but also the
  // \doxygen{itk}{RescaleIntensityImageFilter} which will be used to
  // rescale the result before writing it to a file.
  //
  // SoftwareGuide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef otb::ImageFileReader<InputImageType1> ReaderType1;
  typedef otb::ImageFileReader<InputImageType2> ReaderType2;
  typedef otb::ImageFileWriter<OutputImageType> WriterType;
  typedef itk::RescaleIntensityImageFilter<ChangeImageType,
      OutputImageType> RescalerType;
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // The next step is declaring the filter for the change detection.
  //
  // SoftwareGuide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef MyChangeDetectorImageFilter<InputImageType1, InputImageType2,
      ChangeImageType>      FilterType;
  // Software Guide : EndCodeSnippet

  ReaderType1::Pointer  reader1 = ReaderType1::New();
  ReaderType2::Pointer  reader2 = ReaderType2::New();
  WriterType::Pointer   writer = WriterType::New();
  FilterType::Pointer   filter = FilterType::New();
  RescalerType::Pointer rescaler = RescalerType::New();

  const char * inputFilename1  = argv[1];
  const char * inputFilename2  = argv[2];
  const char * outputFilename = argv[4];

  // Software Guide : BeginLatex
  //
  // We connect the pipeline.
  //
  // SoftwareGuide : EndLatex

  // Software Guide : BeginCodeSnippet
  reader1->SetFileName(inputFilename1);
  reader2->SetFileName(inputFilename2);
  writer->SetFileName(outputFilename);
  rescaler->SetOutputMinimum(itk::NumericTraits<OutputPixelType>::min());
  rescaler->SetOutputMaximum(itk::NumericTraits<OutputPixelType>::max());

  filter->SetInput1(reader1->GetOutput());
  filter->SetInput2(reader2->GetOutput());
  filter->SetRadius(atoi(argv[3]));

  rescaler->SetInput(filter->GetOutput());
  writer->SetInput(rescaler->GetOutput());
  // Software Guide : EndCodeSnippet

  typedef otb::CommandProgressUpdate<FilterType> CommandType;

  CommandType::Pointer observer = CommandType::New();
  filter->AddObserver(itk::ProgressEvent(), observer);

  try
    {
    writer->Update();
    }
  catch (itk::ExceptionObject& err)
    {
    std::cout << "ExceptionObject caught !" << std::endl;
    std::cout << err << std::endl;
    return -1;
    }

  // Software Guide : BeginLatex
  //
  // And that is all.
  //
  // SoftwareGuide : EndLatex

  return EXIT_SUCCESS;

}