1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
/*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
// Software Guide : BeginLatex
//
// In OTB, a generic streamed filter called \doxygen{otb}{ImageClassificationFilter}
// is available to classify any input multi-channel image according to an input
// classification model file. This filter is generic because it works with any
// classification model type (SVM, KNN, Artificial Neural Network,...) generated
// within the OTB generic Machine Learning framework based on OpenCV (\cite{opencv_library}).
// The input model file is smartly parsed according to its content in order to
// identify which learning method was used to generate it. Once the classification
// method and model are known, the input image can be classified. More details are
// given in subsections \ref{ssec:LearningFromSamples} and \ref{ssec:LearningFromImages}
// to generate a classification model either from samples or from images.
// In this example we will illustrate its use. We start by including the
// appropriate header files.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "otbMachineLearningModelFactory.h"
#include "otbImageClassificationFilter.h"
// Software Guide : EndCodeSnippet
#include "otbVectorImage.h"
#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
int main(int itkNotUsed(argc), char * argv[])
{
const char * infname = argv[1];
const char * modelfname = argv[2];
const char * outfname = argv[3];
// Software Guide : BeginLatex
//
// We will assume double precision input images and will also define
// the type for the labeled pixels.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int Dimension = 2;
typedef double PixelType;
typedef unsigned short LabeledPixelType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Our classifier is generic enough to be able to process images
// with any number of bands. We read the input image as a
// \doxygen{otb}{VectorImage}. The labeled image will be a scalar image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::VectorImage<PixelType, Dimension> ImageType;
typedef otb::Image<LabeledPixelType, Dimension> LabeledImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now define the type for the classifier filter, which is
// templated over its input and output image types.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::ImageClassificationFilter<ImageType, LabeledImageType>
ClassificationFilterType;
typedef ClassificationFilterType::ModelType ModelType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Moreover, it is necessary to define a \doxygen{otb}{MachineLearningModelFactory}
// which is templated over its input and output pixel types. This factory is used
// to parse the input model file and to define which classification method to use.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::MachineLearningModelFactory<PixelType, LabeledPixelType>
MachineLearningModelFactoryType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// And finally, we define the reader and the writer. Since the images
// to classify can be very big, we will use a streamed writer which
// will trigger the streaming ability of the classifier.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::ImageFileReader<ImageType> ReaderType;
typedef otb::ImageFileWriter<LabeledImageType> WriterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We instantiate the classifier and the reader objects and we set
// the existing model obtained in a previous training step.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ClassificationFilterType::Pointer filter = ClassificationFilterType::New();
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(infname);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The input model file is parsed according to its content and the generated model
// is then loaded within the \doxygen{otb}{ImageClassificationFilter}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ModelType::Pointer model;
model = MachineLearningModelFactoryType::CreateMachineLearningModel(
modelfname,
MachineLearningModelFactoryType::ReadMode);
model->Load(modelfname);
filter->SetModel(model);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We plug the pipeline and
// trigger its execution by updating the output of the writer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetInput(reader->GetOutput());
WriterType::Pointer writer = WriterType::New();
writer->SetInput(filter->GetOutput());
writer->SetFileName(outfname);
writer->Update();
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
|