File: CloudDetectionExample.cxx

package info (click to toggle)
otb 5.8.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,496 kB
  • ctags: 40,282
  • sloc: cpp: 306,573; ansic: 3,575; python: 450; sh: 214; perl: 74; java: 72; makefile: 70
file content (271 lines) | stat: -rw-r--r-- 9,332 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/


//  Software Guide : BeginCommandLineArgs
//  INPUTS: {CloudsOnReunion.tif}
//  OUTPUTS: {CloudDetectionOutput.tif} , {pretty_CloudsOnReunion.png} , {pretty_CloudDetectionOutput.png}
//  553 467 734 581 0.4 0.6 1.0
//  Software Guide : EndCommandLineArgs

// Software Guide : BeginLatex
//
// The cloud detection functor is a processing chain composed by the
// computation of a spectral angle (with SpectralAngleFunctor).  The
// result is multiplied by a gaussian factor (with
// CloudEstimatorFunctor) and finally thresholded to obtain a binary
// image (with CloudDetectionFilter).  However, modifications can be
// added in the pipeline to adapt to a particular situation.
//
// This example demonstrates the use of the
// \doxygen{otb}{CloudDetectionFilter}.  This filter uses the spectral
// angle principle to measure the radiometric gap between a reference
// pixel and the other pixels of the image.
//
// The first step toward the use of this filter is the inclusion of
// the proper header files.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "otbCloudDetectionFilter.h"
// Software Guide : EndCodeSnippet

#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbVectorRescaleIntensityImageFilter.h"
#include "otbMultiChannelExtractROI.h"

int main(int argc, char * argv[])
{

  if (argc != 12)
    {
    std::cerr << "Usage: " << argv[0];
    std::cerr <<
    "inputFileName outputFileName printableInputFileName printableOutputFileName";
    std::cerr <<
    "firstPixelComponent secondPixelComponent thirdPixelComponent fourthPixelComponent ";
    std::cerr << "variance ";
    std::cerr << "minThreshold maxThreshold " << std::endl;
    return EXIT_FAILURE;
    }

  const unsigned int Dimension = 2;
  // Software Guide : BeginLatex
  //
  // Then we must decide what pixel type to use for the images. We choose to do
  // all the computations in double precision.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef double InputPixelType;
  typedef double OutputPixelType;
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  The images are defined using the pixel type and the
  //  dimension. Please note that the
  //  \doxygen{otb}{CloudDetectionFilter} needs an
  //  \doxygen{otb}{VectorImage} as input to handle multispectral
  //  images.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef otb::VectorImage<InputPixelType, Dimension> VectorImageType;
  typedef VectorImageType::PixelType                  VectorPixelType;
  typedef otb::Image<OutputPixelType, Dimension>      OutputImageType;
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  // We define the functor type that the filter will use. We use the
  // \doxygen{otb}{CloudDetectionFunctor}.
  //
  //  Software Guide : EndLatex

  //  Software Guide : BeginCodeSnippet
  typedef otb::Functor::CloudDetectionFunctor<VectorPixelType,
      OutputPixelType>   FunctorType;
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // Now we can define the \doxygen{otb}{CloudDetectionFilter} that
  // takes a multi-spectral image as input and produces a binary
  // image.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef otb::CloudDetectionFilter<VectorImageType, OutputImageType,
      FunctorType> CloudDetectionFilterType;
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  An \doxygen{otb}{ImageFileReader} class is also instantiated in
  //  order to read image data from a file. Then, an
  //  \doxygen{otb}{ImageFileWriter} is instantiated in order to write
  //  the output image to a file.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef otb::ImageFileReader<VectorImageType> ReaderType;
  typedef otb::ImageFileWriter<OutputImageType> WriterType;
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // The different filters composing our pipeline are created by invoking their
  // \code{New()} methods, assigning the results to smart pointers.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  ReaderType::Pointer               reader = ReaderType::New();
  CloudDetectionFilterType::Pointer cloudDetection =
    CloudDetectionFilterType::New();
  WriterType::Pointer writer = WriterType::New();
  // Software Guide : EndCodeSnippet

  reader->SetFileName(argv[1]);
  cloudDetection->SetInput(reader->GetOutput());

  // Software Guide : BeginLatex
  //
  // The \doxygen{otb}{CloudDetectionFilter} needs to have a reference
  // pixel corresponding to the spectral content likely to represent a
  // cloud. This is done by passing a pixel to the filter. Here we
  // suppose that the input image has four spectral bands.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  VectorPixelType referencePixel;
  referencePixel.SetSize(4);
  referencePixel.Fill(0.);
  referencePixel[0] = (atof(argv[5]));
  referencePixel[1] = (atof(argv[6]));
  referencePixel[2] = (atof(argv[7]));
  referencePixel[3] = (atof(argv[8]));
  cloudDetection->SetReferencePixel(referencePixel);
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // We must also set the variance parameter of the filter and the
  // parameter of the gaussian functor.  The bigger the value, the
  // more tolerant the detector will be.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  cloudDetection->SetVariance(atof(argv[9]));
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // The minimum and maximum thresholds are set to binarise the final result.
  // These values have to be between 0 and 1.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  cloudDetection->SetMinThreshold(atof(argv[10]));
  cloudDetection->SetMaxThreshold(atof(argv[11]));
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginCodeSnippet
  writer->SetFileName(argv[2]);
  writer->SetInput(cloudDetection->GetOutput());
  writer->Update();
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // Figure~\ref{fig:CLOUDDETECTION_FILTER} shows the result of applying
  // the cloud detection filter to a cloudy image.
  // \begin{figure} \center
  // \includegraphics[width=0.44\textwidth]{pretty_CloudsOnReunion.eps}
  // \includegraphics[width=0.44\textwidth]{pretty_CloudDetectionOutput.eps}
  // \itkcaption[Cloud Detection Example]{From left to right : original image, cloud mask resulting from processing.}
  // \label{fig:CLOUDDETECTION_FILTER}
  // \end{figure}
  //
  // Software Guide : EndLatex

  // Pretty image creation for printing
  typedef otb::Image<unsigned char,
      Dimension>
  OutputPrettyImageType;
  typedef otb::VectorImage<unsigned char,
      Dimension>
  InputPrettyImageType;
  typedef otb::ImageFileWriter<OutputPrettyImageType>
  WriterPrettyOutputType;
  typedef otb::ImageFileWriter<InputPrettyImageType>
  WriterPrettyInputType;
  typedef itk::RescaleIntensityImageFilter<OutputImageType,
      OutputPrettyImageType>
  RescalerOutputType;
  typedef otb::VectorRescaleIntensityImageFilter<VectorImageType,
      InputPrettyImageType>
  RescalerInputType;
  typedef otb::MultiChannelExtractROI<InputPixelType,
      InputPixelType>
  ChannelExtractorType;

  ChannelExtractorType::Pointer  selecter           = ChannelExtractorType::New();
  RescalerInputType::Pointer     inputRescaler     = RescalerInputType::New();
  WriterPrettyInputType::Pointer prettyInputWriter = WriterPrettyInputType::New();
  selecter->SetInput(reader->GetOutput());
  selecter->SetChannel(3);
  selecter->SetChannel(2);
  selecter->SetChannel(1);
  inputRescaler->SetInput(selecter->GetOutput());
  VectorPixelType minimum, maximum;
  minimum.SetSize(3);
  maximum.SetSize(3);
  minimum.Fill(0);
  maximum.Fill(255);
  inputRescaler->SetOutputMinimum(minimum);
  inputRescaler->SetOutputMaximum(maximum);
  prettyInputWriter->SetFileName(argv[3]);
  prettyInputWriter->SetInput(inputRescaler->GetOutput());

  RescalerOutputType::Pointer     outputRescaler     = RescalerOutputType::New();
  WriterPrettyOutputType::Pointer prettyOutputWriter =
    WriterPrettyOutputType::New();
  outputRescaler->SetInput(cloudDetection->GetOutput());
  outputRescaler->SetOutputMinimum(0);
  outputRescaler->SetOutputMaximum(255);
  prettyOutputWriter->SetFileName(argv[4]);
  prettyOutputWriter->SetInput(outputRescaler->GetOutput());

  prettyInputWriter->Update();
  prettyOutputWriter->Update();

  return EXIT_SUCCESS;
}