1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
/*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
// Software Guide : BeginLatex
//
// Starting with the version 3.14.0 of the OTB library, a wrapper around OGR API
// is provided. The purposes of the wrapper are:
// \begin{itemize}
// \item to permit OTB to handle very large vector data sets;
// \item and to offer a modern (in the
// \href{http://en.wikipedia.org/wiki/RAII}{RAII} sense) interface to handle
// vector data.
// \end{itemize}
//
// As OGR already provides a rich set of geometric related data, as well as the
// algorithms to manipulate and serialize them, we've decided to wrap it into a
// new \emph{exception-safe} interface.
//
// This example illustrates the use of OTB's OGR wrapper framework. This
// program takes a source of polygons (a shape file for instance) as input and
// produces a datasource of multi-polygons as output.
//
// We will start by including the header files for the OGR wrapper classes,
// plus other header files that are out of scope here.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "otbOGRDataSourceWrapper.h"
// Software Guide : EndCodeSnippet
#include <cstdio> // EXIT_*
// Software Guide : BeginLatex
//
// The following declarations will permit to merge the
// \subdoxygen{otb}{ogr}{Field}s from each \subdoxygen{otb}{ogr}{Feature} into
// list-fields. We'll get back to this point later.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include <string>
#include <vector>
#include <boost/variant.hpp>
#include "otbJoinContainer.h"
typedef std::vector<int> IntList_t;
typedef std::vector<std::string> StringList_t;
typedef std::vector<double> RealList_t;
// TODO: handle non recognized fields
typedef boost::variant<IntList_t, StringList_t, RealList_t> AnyListField_t;
typedef std::vector<AnyListField_t> AnyListFieldList_t;
AnyListFieldList_t prepareNewFields(
OGRFeatureDefn /*const*/& defn, otb::ogr::Layer & destLayer);
void printField(
otb::ogr::Field const& field, AnyListField_t const& newListField);
void assignField(
otb::ogr::Field field, AnyListField_t const& newListFieldValue);
void pushFieldsToFieldLists(
otb::ogr::Feature const& inputFeature, AnyListFieldList_t & field);
// Software Guide : EndCodeSnippet
int main(int argc, char * argv[])
{
if (argc != 3)
{
std::cerr << "Usage: " << argv[0];
std::cerr << " inputFile outputFile" << std::endl;
return EXIT_FAILURE;
}
try
{
// Software Guide : BeginLatex
//
// We caw now instantiate first the input \subdoxygen{otb}{ogr}{DataSource}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
otb::ogr::DataSource::Pointer source = otb::ogr::DataSource::New(
argv[1], otb::ogr::DataSource::Modes::Read);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// And then, we can instantiate the output \subdoxygen{otb}{ogr}{DataSource} and
// its unique \subdoxygen{otb}{ogr}{Layer} multi-polygons.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
otb::ogr::DataSource::Pointer destination = otb::ogr::DataSource::New(
argv[2], otb::ogr::DataSource::Modes::Update_LayerCreateOnly);
otb::ogr::Layer destLayer = destination->CreateLayer(
argv[2], ITK_NULLPTR, wkbMultiPolygon);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The data obtained from the reader mimics the interface of
// \code{OGRDataSource}. To access the geometric objects stored, we need first
// to iterate on the \subdoxygen{otb}{ogr}{Layer}s from the
// \subdoxygen{otb}{ogr}{DataSource}, then on the \subdoxygen{otb}{ogr}{Feature}
// from each layer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// for (auto const& inputLayer : *source)
for (otb::ogr::DataSource::const_iterator lb=source->begin(), le=source->end()
; lb != le
; ++lb)
{
otb::ogr::Layer const& inputLayer = *lb;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In this example we will only read polygon objects from the input
// file before writing them to the output file. As all features from a
// layer share the same geometric type, we can filter on the layer
// geometric type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
if (inputLayer.GetGeomType() != wkbPolygon)
{
std::cout << "Warning: Ignoring layer: ";
inputLayer.PrintSelf(std::cout, 2);
continue; // skip to next layer
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In order to prepare the fields for the new layer, we first need to extract
// the fields definition from the input layer in order to deduce the new fields
// of the result layer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
OGRFeatureDefn & sourceFeatureDefn = inputLayer.GetLayerDefn();
AnyListFieldList_t fields = prepareNewFields(sourceFeatureDefn, destLayer);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The result layer will contain only one feature, per input layer, that stores
// a multi-polygon shape. All geometric shapes are plain \code{OGRGeometry}
// objects.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
OGRMultiPolygon destGeometry; // todo: use UniqueGeometryPtr
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The transformation algorithm is as simple as aggregating all the polygons
// from the features from the input layer into the destination multi-polygon
// geometric object.
//
// Note that \subdoxygen{otb}{ogr}{Feature}\code{::GetGeometry()} provides a
// direct access to a non-mutable \code{OGRGeometry} pointer and that
// \code{OGRGeometryCollection::addGeometry()} copies the received pointer. As
// a consequence, the following code is optimal regarding the geometric objects
// manipulated.
//
// This is also at this point that we fetch the field values from the input
// features to accumulate them into the \code{fields} list.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// for (auto const& inputFeature : inputLayer)
for (otb::ogr::Layer::const_iterator fb=inputLayer.begin(), fe=inputLayer.end()
; fb != fe
; ++fb)
{
otb::ogr::Feature const& inputFeature = *fb;
destGeometry.addGeometry(inputFeature.GetGeometry());
pushFieldsToFieldLists(inputFeature,fields);
} // for each feature
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then the new geometric object can be added to a new feature, that will be
// eventually added to the destination layer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
otb::ogr::Feature newFeature(destLayer.GetLayerDefn());
newFeature.SetGeometry(&destGeometry); // SetGeom -> copies
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We set here the fields of the new feature with the ones accumulated over the
// features from the input layer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
for (size_t i=0, N=sourceFeatureDefn.GetFieldCount(); i!=N; ++i)
{
printField(newFeature[i], fields[i]);
assignField(newFeature[i], fields[i]);
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally we add (with \subdoxygen{otb}{ogr}{Layer}\code{::CreateFeature()}
// the new feature to the destination layer, and we can process the next layer
// from the input datasource.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
destLayer.CreateFeature(newFeature); // adds feature to the layer
} // for each layer
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
catch (std::exception const& e)
{
std::cerr << e.what() << "\n";
}
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// In order to \emph{simplify} the manipulation of \subdoxygen{otb}{ogr}{Field}s
// and to avoid copy-paste for each possible case of field-type, this example
// relies on
// \href{http://www.boost.org/doc/libs/release/doc/html/variant.html}{boost.Variant}.
//
// As such, we have defined \code{AnyListField\_t} as a variant type on all
// possible types of field. Then, the manipulation of the variant field values is
// done through the templatized functions
// \subdoxygen{otb}{ogr}{Field}\code{::SetValue<>()} and
// \subdoxygen{otb}{ogr}{Field}\code{::GetValue<>()}, from the various
// variant-visitors.
//
// Before using the visitors, we need to operate a switch on the exact type of
// each field from the input layers. An empty field-values container is first
// added to the set of fields containers. Finally, the destination layer is
// completed with a new field of the right deduced type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
AnyListFieldList_t prepareNewFields(
OGRFeatureDefn /*const*/& defn, otb::ogr::Layer & destLayer)
{
AnyListFieldList_t fields;
for (int i=0, N=defn.GetFieldCount(); i!=N; ++i)
{
const char* name = defn.GetFieldDefn(i)->GetNameRef();
OGRFieldType type = static_cast<OGRFieldType>(-1);
switch (defn.GetFieldDefn(i)->GetType())
{
case OFTInteger:
fields.push_back (IntList_t());
type = OFTIntegerList;
break;
case OFTString:
fields.push_back (StringList_t());
type = OFTStringList;
break;
case OFTReal:
fields.push_back (RealList_t());
type = OFTRealList;
break;
default:
std::cerr << "Unsupported field type: " <<
OGRFieldDefn::GetFieldTypeName(defn.GetFieldDefn(i)->GetType())
<< " for " << name << "\n";
break;
}
OGRFieldDefn newFieldDefn(name, type); // name is duplicated here => no dangling pointer
destLayer.CreateField(newFieldDefn, false);
}
return fields;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The first visitor, \code{PushVisitor()}, takes the value from one field
// and pushes it into a container of list-variant. The type of the field to
// fetch is deduced from the type of the values stored in the container. It is
// called by \code{pushFieldsToFieldLists()}, that for each field of the input
// feature applies the visitor on the container.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
struct PushVisitor : boost::static_visitor<>
{
PushVisitor(otb::ogr::Field const& f) : m_f(f) {}
template <typename T> void operator()(T & container) const
{
typedef typename T::value_type value_type;
value_type const value = m_f.GetValue<value_type>();
container.push_back(value);
}
private:
otb::ogr::Field const& m_f;
};
void pushFieldsToFieldLists(
otb::ogr::Feature const& inputFeature, AnyListFieldList_t & fields)
{
// For each field
for (size_t i=0, N=inputFeature.GetSize(); i!=N; ++i)
{
otb::ogr::Field field = inputFeature[i];
boost::apply_visitor(PushVisitor(field), fields[i]);
}
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// A second simple visitor, \code{PrintVisitor}, is defined to trace the
// values of each field (which contains a list of typed data (integers, strings
// or reals).
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
struct PrintVisitor : boost::static_visitor<>
{
template <typename T> void operator()(T const& container) const
{
otb::Join(std::cout, container, ", ");
}
};
void printField(otb::ogr::Field const& field, AnyListField_t const& newListField)
{
std::cout << field.GetName() << " -> ";
boost::apply_visitor(PrintVisitor(), newListField);
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The third visitor, \code{SetFieldVisitor}, sets the field of the
// destination features, which have been accumulated in the list of typed
// values.
//
// Software Guide : BeginCodeSnippet
struct SetFieldVisitor : boost::static_visitor<>
{
SetFieldVisitor(otb::ogr::Field f) : m_f(f) {}
// operator() from visitors are expected to be const
template <typename T> void operator()(T const& container) const
{
m_f.SetValue(container);
}
private:
otb::ogr::Field mutable m_f; // this is a proxy -> a reference in a sort
};
void assignField(otb::ogr::Field field, AnyListField_t const& newListFieldValue)
{
boost::apply_visitor(SetFieldVisitor(field), newListFieldValue);
}
// Software Guide : EndCodeSnippet
// Software Guide : EndLatex
//
// Software Guide : BeginLatex
//
// Note that this example does not handle the case when the input layers don't
// share a same fields-definition.
//
// Software Guide : EndLatex
|