1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
/*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
// Software Guide : BeginLatex
//
// As we have seen, the reading of images is managed by the class \doxygen{otb}{ImageFileReader}
// while writing is performed by the class
// \doxygen{otb}{ImageFileWriter}. ITK's pipeline implements
// streaming. That means that a filter for which the
// \code{ThreadedGenerateData} method is implemented, will only produce the
// data for the region requested by the following filter in the
// pipeline. Therefore, in order to use the streaming functionality
// one needs to use a filter at the end of the pipeline which
// requests for adjacent regions of the image to be processed. In
// ITK, the \doxygen{itk}{StreamingImageFilter} class is used for
// this purpose. However, ITK does not implement streaming from/to
// files. This means that even if the pipeline has a small memory
// footprint, the images have to be stored in memory at least after
// the read operation and before the write operation.
//
// OTB implements read/write streaming. For the image file reading,
// this is transparent for the programmer, and if a streaming loop is
// used at the end of the pipeline, the read operation will be
// streamed. For the file writing, the
// \doxygen{otb}{ImageFileWriter} has to be used.
//
// The first step for performing streamed reading and writing is to include the
// following headers.
//
// \index{otb::ImageFileReader}
// \index{otb::ImageFileReader!header}
//
// \index{otb::ImageFileWriter}
// \index{otb::ImageFileWriter!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
// Software Guide : EndCodeSnippet
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbImage.h"
int main(int argc, char * argv[])
{
// Verify the number of parameters in the command line
if (argc < 3)
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Then, as usual, a decision must be made about the type of pixel used to
// represent the image processed by the pipeline.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char PixelType;
const unsigned int Dimension = 2;
typedef otb::Image<PixelType, Dimension> ImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now instantiate the types of the reader and writer. These two
// classes are parameterized over the image type. We will rescale
// the intensities of the as an example of intermediate processing step.
//
// \index{otb::ImageFileWriter!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::ImageFileReader<ImageType> ReaderType;
typedef itk::RescaleIntensityImageFilter<ImageType, ImageType> RescalerType;
typedef otb::ImageFileWriter<ImageType> WriterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, we create one object of each type using the New() method and
// assigning the result to a \doxygen{itk}{SmartPointer}.
//
// \index{otb::ImageFileReader!New()}
// \index{otb::ImageFileWriter!New()}
// \index{otb::StreamingImageFileReader!SmartPointer}
// \index{otb::ImageFileWriter!SmartPointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ReaderType::Pointer reader = ReaderType::New();
RescalerType::Pointer rescaler = RescalerType::New();
WriterType::Pointer writer = WriterType::New();
// Software Guide : EndCodeSnippet
// Here we recover the file names from the command line arguments
//
const char * inputFilename = argv[1];
const char * outputFilename = argv[2];
// Software Guide : BeginLatex
//
// The name of the file to be read or written is passed with the
// SetFileName() method. We also choose the range of intensities
// for the rescaler.
//
// \index{otb::ImageFileReader!SetFileName()}
// \index{otb::ImageFileWriter!SetFileName()}
// \index{SetFileName()!otb::ImageFileReader}
// \index{SetFileName()!otb::ImageFileWriter}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
reader->SetFileName(inputFilename);
rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
writer->SetFileName(outputFilename);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now connect these readers and writers to filters to create a
// pipeline.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
rescaler->SetInput(reader->GetOutput());
writer->SetInput(rescaler->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now trigger the pipeline execution by calling the
// \code{Update} method on the writer.
//
// Software Guide : EndLatex
try
{
// Software Guide : BeginCodeSnippet
writer->Update();
// Software Guide : EndCodeSnippet
}
catch (itk::ExceptionObject& err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// The writer will ask its preceding filter to provide different
// portions of the image. Each filter in the pipeline will do the
// same until the request arrives to the reader. In this way, the
// pipeline will be executed for each requested region and the
// whole input image will be read, processed and written without
// being fully loaded in memory.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|