File: NeighborhoodIterators6.cxx

package info (click to toggle)
otb 5.8.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,496 kB
  • ctags: 40,282
  • sloc: cpp: 306,573; ansic: 3,575; python: 450; sh: 214; perl: 74; java: 72; makefile: 70
file content (272 lines) | stat: -rw-r--r-- 8,624 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkNeighborhoodIterator.h"
#include "itkImageRegionIterator.h"
#include "itkFastMarchingImageFilter.h"
#include "itkAddImageFilter.h"

//  Software Guide : BeginCommandLineArgs
//    OUTPUTS: {NeighborhoodIterators6a.png}
//    100 100
//  Software Guide : EndCommandLineArgs

//  Software Guide : BeginCommandLineArgs
//    OUTPUTS: {NeighborhoodIterators6b.png}
//    50 150
//  Software Guide : EndCommandLineArgs

//  Software Guide : BeginCommandLineArgs
//    OUTPUTS: {NeighborhoodIterators6c.png}
//    150 50
//  Software Guide : EndCommandLineArgs

// Software Guide : BeginLatex
//
// Some image processing routines do not need to visit every pixel in an
// image. Flood-fill and connected-component algorithms, for example, only
// visit pixels that are locally connected to one another.  Algorithms
// such as these can be efficiently written using the random access
// capabilities of the neighborhood iterator.
//
// The following example finds local minima.  Given a seed point, we can search
// the neighborhood of that point and pick the smallest value $m$.  While $m$
// is not at the center of our current neighborhood, we move in the direction
// of $m$ and repeat the analysis.  Eventually we discover a local minimum and
// stop.  This algorithm is made trivially simple in ND using an ITK
// neighborhood iterator.
//
// To illustrate the process, we create an image that descends everywhere to a
// single minimum:  a positive distance transform to a point.  The details of
// creating the distance transform are not relevant to the discussion of
// neighborhood iterators, but can be found in the source code of this
// example. Some noise has been added to the distance transform image for
// additional interest.
//
// Software Guide : EndLatex

int main(int argc, char *argv[])
{
  if (argc < 4)
    {
    std::cerr << "Missing parameters. " << std::endl;
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0]
              << " outputImageFile startX startY"
              << std::endl;
    return -1;
    }

  typedef float                                PixelType;
  typedef otb::Image<PixelType, 2>             ImageType;
  typedef itk::NeighborhoodIterator<ImageType> NeighborhoodIteratorType;

  typedef itk::FastMarchingImageFilter<ImageType,
      ImageType> FastMarchingFilterType;

  FastMarchingFilterType::Pointer fastMarching = FastMarchingFilterType::New();

  typedef FastMarchingFilterType::NodeContainer NodeContainer;
  typedef FastMarchingFilterType::NodeType      NodeType;

  NodeContainer::Pointer seeds = NodeContainer::New();

  ImageType::IndexType seedPosition;

  seedPosition[0] = 128;
  seedPosition[1] = 128;
  const double initialDistance = 1.0;

  NodeType node;

  const double seedValue = -initialDistance;

  ImageType::SizeType size = {{256, 256}};

  node.SetValue(seedValue);
  node.SetIndex(seedPosition);
  seeds->Initialize();
  seeds->InsertElement(0, node);

  fastMarching->SetTrialPoints(seeds);
  fastMarching->SetSpeedConstant(1.0);

  itk::AddImageFilter<ImageType, ImageType, ImageType>::Pointer adder
    = itk::AddImageFilter<ImageType, ImageType, ImageType>::New();

  // Allocate the noise image
  ImageType::Pointer noise = ImageType::New();
  ImageType::RegionType noiseRegion;
  noiseRegion.SetSize(size);
  noise->SetRegions(noiseRegion);
  noise->Allocate();

  // Fill the noise image
  itk::ImageRegionIterator<ImageType> itNoise(noise, noiseRegion);
  itNoise.GoToBegin();

  // Random number seed
  unsigned int sample_seed = 12345;
  double u    = 0.;
  double rnd  = 0.;
  double dMin = -.7;
  double dMax = .8;

  while(!itNoise.IsAtEnd())
    {
    sample_seed = ( sample_seed * 16807 ) % 2147483647L;
    u = static_cast< double >( sample_seed ) / 2147483711UL;
    rnd = ( 1.0 - u ) * dMin + u * dMax;

    itNoise.Set( (PixelType)rnd );
    ++itNoise;
    }

  adder->SetInput1(noise);
  adder->SetInput2(fastMarching->GetOutput());

  try
    {
    fastMarching->SetOutputSize(size);
    fastMarching->Update();

    adder->Update();

    }
  catch (itk::ExceptionObject& excep)
    {
    std::cerr << "Exception caught !" << std::endl;
    std::cerr << excep << std::endl;
    }

  ImageType::Pointer input = adder->GetOutput();

// Software Guide : BeginLatex
//
// The variable \code{input} is the pointer to the distance transform image.
// The local minimum algorithm is initialized with a seed point read from the
// command line.
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  ImageType::IndexType index;
  index[0] = ::atoi(argv[2]);
  index[1] = ::atoi(argv[3]);
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
// Next we create the neighborhood iterator and position it at the seed point.
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  NeighborhoodIteratorType::RadiusType radius;
  radius.Fill(1);
  NeighborhoodIteratorType it(radius, input, input->GetRequestedRegion());

  it.SetLocation(index);
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// Searching for the local minimum involves finding the minimum in the current
// neighborhood, then shifting the neighborhood in the direction of that
// minimum.  The \code{for} loop below records the \doxygen{itk}{Offset} of the
// minimum neighborhood pixel.  The neighborhood iterator is then moved using
// that offset.  When a local minimum is detected, \code{flag} will remain
// false and the \code{while} loop will exit.  Note that this code is
// valid for an image of any dimensionality.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  bool flag = true;
  while (flag == true)
    {
    NeighborhoodIteratorType::OffsetType nextMove;
    nextMove.Fill(0);

    flag = false;

    PixelType min = it.GetCenterPixel();
    for (unsigned i = 0; i < it.Size(); ++i)
      {
      if (it.GetPixel(i) < min)
        {
        min = it.GetPixel(i);
        nextMove = it.GetOffset(i);
        flag = true;
        }
      }
    it.SetCenterPixel(255.0);
    it += nextMove;
    }
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// Figure~\ref{fig:NeighborhoodExample6} shows the results of the algorithm
// for several seed points.  The white line is the path of the iterator from
// the seed point to the minimum in the center of the image.  The effect of the
// additive noise is visible as the small perturbations in the paths.
//
// \begin{figure} \centering
// \includegraphics[width=0.3\textwidth]{NeighborhoodIterators6a.eps}
// \includegraphics[width=0.3\textwidth]{NeighborhoodIterators6b.eps}
// \includegraphics[width=0.3\textwidth]{NeighborhoodIterators6c.eps}
// \itkcaption[Finding local minima]{Paths traversed by the neighborhood
// iterator from different seed points to the local minimum.
// The true minimum is at the center
// of the image.  The path of the iterator is shown in white. The effect of
// noise in the image is seen as small perturbations in each path. }
// \protect\label{fig:NeighborhoodExample6} \end{figure}
//
// Software Guide : EndLatex

  typedef unsigned char                        WritePixelType;
  typedef otb::Image<WritePixelType, 2>        WriteImageType;
  typedef otb::ImageFileWriter<WriteImageType> WriterType;

  typedef itk::RescaleIntensityImageFilter<ImageType,
      WriteImageType> RescaleFilterType;

  RescaleFilterType::Pointer rescaler = RescaleFilterType::New();

  rescaler->SetOutputMinimum(0);
  rescaler->SetOutputMaximum(255);
  rescaler->SetInput(input);

  WriterType::Pointer writer = WriterType::New();
  writer->SetFileName(argv[1]);
  writer->SetInput(rescaler->GetOutput());
  try
    {
    writer->Update();
    }
  catch (itk::ExceptionObject& err)
    {
    std::cout << "ExceptionObject caught !" << std::endl;
    std::cout << err << std::endl;
    return -1;
    }
  return EXIT_SUCCESS;
}