1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
/*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
Copyright (c) Institut Mines-Telecom. All rights reserved.
See IMTCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {ROI_QB_MUL_4.tif}
// OUTPUTS: {SEMClassif.png}
// 4 40 5
// Software Guide : EndCommandLineArgs
//
// Software Guide : BeginLatex
//
// In this example, we present OTB's implementation of SEM, through the class
// \doxygen{otb}{SEMClassifier}. This class performs a stochastic version
// of the EM algorithm, but instead of inheriting from
// \doxygen{itk}{ExpectationMaximizationMixtureModelEstimator}, we chose to
// inherit from \subdoxygen{itk}{Statistics}{ListSample< TSample >},
// in the same way as \doxygen{otb}{SVMClassifier}.
//
// The program begins with \doxygen{otb}{VectorImage} and outputs
// \doxygen{itb}{Image}. Then appropriate header files have to be included:
//
// Software Guide : EndLatex
#include <iostream>
#include "itkVector.h"
#include "itkVariableLengthVector.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
// Software Guide : BeginCodeSnippet
#include "otbImage.h"
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \doxygen{otb}{SEMClassifier} performs estimation of mixture to fit the
// initial histogram. Actually, mixture of Gaussian pdf can be performed.
// Those generic pdf are treated in
// \subdoxygen{otb}{Statistics}{ModelComponentBase}. The Gaussian model
// is taken in charge with the class
// \subdoxygen{otb}{Statistics}{GaussianModelComponent}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "otbSEMClassifier.h"
// Software Guide : EndCodeSnippet
int main(int argc, char * argv[])
{
try
{
if (argc != 6)
{
std::cerr << "Unsupervised Image Segmentation with SEM approach\n";
std::cerr << argv[0] << " imageIn imgClassif num_of_class ";
std::cerr << "nbIteration size_of_the_neighborhood\n";
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Input/Output images type are define in a classical way.
// In fact, a \doxygen{itk}{VariableLengthVector} is to be
// considered for the templated \code{MeasurementVectorType}, which
// will be used in the \code{ListSample} interface.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef double PixelType;
typedef otb::VectorImage<PixelType, 2> ImageType;
typedef otb::ImageFileReader<ImageType> ReaderType;
typedef otb::Image<unsigned char, 2> OutputImageType;
typedef otb::ImageFileWriter<OutputImageType> WriterType;
// Software Guide : EndCodeSnippet
char * fileNameIn = argv[1];
char * fileNameImgInit = ITK_NULLPTR;
char * fileNameOut = argv[2];
int numberOfClasses = atoi(argv[3]);
int numberOfIteration = atoi(argv[4]);
int neighborhood = atoi(argv[5]);
double terminationThreshold = 1e-5;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(fileNameIn);
reader->Update();
// Software Guide : BeginLatex
//
// Once the input image is opened, the classifier may be initialised by
// \code{SmartPointer}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::SEMClassifier<ImageType, OutputImageType> ClassifType;
ClassifType::Pointer classifier = ClassifType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, it follows, classical initializations of the pipeline.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
classifier->SetNumberOfClasses(numberOfClasses);
classifier->SetMaximumIteration(numberOfIteration);
classifier->SetNeighborhood(neighborhood);
classifier->SetTerminationThreshold(terminationThreshold);
classifier->SetSample(reader->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// When an initial segmentation is available, the classifier may use it
// as image (of type \code{OutputImageType}) or as a
// \doxygen{itk}{SampleClassifier} result (of type
// \subdoxygen{itk}{Statistics}{MembershipSample< SampleType >}).
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
if (fileNameImgInit != ITK_NULLPTR)
{
typedef otb::ImageFileReader<OutputImageType> ImgInitReaderType;
ImgInitReaderType::Pointer segReader = ImgInitReaderType::New();
segReader->SetFileName(fileNameImgInit);
segReader->Update();
classifier->SetClassLabels(segReader->GetOutput());
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// By default, \doxygen{otb}{SEMClassifier} performs initialization of
// \code{ModelComponentBase} by as many instantiation of
// \subdoxygen{otb}{Statistics}{GaussianModelComponent} as the number of
// classes to estimate in the mixture. Nevertheless, the user may add specific
// distribution into the mixture estimation. It is permitted by the use of
// \code{AddComponent} for the given class number and the specific distribution.
// Software Guide : EndLatex
std::cerr << "Explicit component initialization\n";
// Software Guide : BeginCodeSnippet
typedef ClassifType::ClassSampleType ClassSampleType;
typedef otb::Statistics::GaussianModelComponent<ClassSampleType>
GaussianType;
for (int i = 0; i < numberOfClasses; ++i)
{
GaussianType::Pointer model = GaussianType::New();
classifier->AddComponent(i, model);
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Once the pipeline is instantiated. The segmentation by itself may be
// launched by using the \code{Update} function.
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
classifier->Update();
}
// Software Guide : EndCodeSnippet
catch (itk::ExceptionObject& err)
{
std::cerr << "ExceptionObject caught in " << argv[0] << "!\n";
std::cerr << err << std::endl;
return -1;
}
// Software Guide : BeginLatex
//
// The segmentation may outputs a result of type
// \subdoxygen{itk}{Statistics}{MembershipSample< SampleType >} as it is the
// case for the \doxygen{otb}{SVMClassifier}. But when using
// \code{GetOutputImage} the output is directly an Image.
//
// Only for visualization purposes, we choose to rescale the image of
// classes before saving it to a file. We will use the
// \doxygen{itk}{RescaleIntensityImageFilter} for this purpose.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::RescaleIntensityImageFilter<OutputImageType,
OutputImageType> RescalerType;
RescalerType::Pointer rescaler = RescalerType::New();
rescaler->SetOutputMinimum(itk::NumericTraits<unsigned char>::min());
rescaler->SetOutputMaximum(itk::NumericTraits<unsigned char>::max());
rescaler->SetInput(classifier->GetOutputImage());
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(fileNameOut);
writer->SetInput(rescaler->GetOutput());
writer->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Figure \ref{fig:RESSEMCLASSIF} shows the result of the SEM segmentation
// with 4 different classes and a contextual neighborhood of 3 pixels.
// \begin{figure}
// \center
// \includegraphics[width=0.6\textwidth]{SEMClassif.eps}
// \itkcaption[SEM Classification results]{SEM Classification results.}
// \label{fig:RESSEMCLASSIF}
// \end{figure}
//
// As soon as the segmentation is performed by an iterative stochastic
// process, it is worth verifying the output status: does the segmentation
// ends when it has converged or just at the limit of the iteration numbers.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::cerr << "Program terminated with a ";
if (classifier->GetTerminationCode() ==
ClassifType::CONVERGED) std::cerr << "converged ";
else std::cerr << "not-converged ";
std::cerr << "code...\n";
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The text output gives for each class the parameters of the pdf (e.g. mean
// of each component of the class and there covariance matrix, in the case of a
// Gaussian mixture model).
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
classifier->Print(std::cerr);
// Software Guide : EndCodeSnippet
}
catch (itk::ExceptionObject& err)
{
std::cerr << "Exception itk::ExceptionObject thrown !\n";
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
catch (...)
{
std::cerr << "Unknown exception thrown !\n";
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|