File: SOMClassifierExample.cxx

package info (click to toggle)
otb 5.8.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,496 kB
  • ctags: 40,282
  • sloc: cpp: 306,573; ansic: 3,575; python: 450; sh: 214; perl: 74; java: 72; makefile: 70
file content (273 lines) | stat: -rw-r--r-- 8,735 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/


#include <fstream>
#include "otbImage.h"
#include "otbSOMMap.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkImageRegionIterator.h"
#include "itkListSample.h"

//  Software Guide : BeginCommandLineArgs
//    INPUTS: {ROI_QB_MUL_1.png}, {ROI_QB_MUL_SOM.png}
//    OUTPUTS: {ROI_QB_MUL_SOMCLASS.png}
//  Software Guide : EndCommandLineArgs

//  Software Guide : BeginLatex
// This example illustrates the use of the
// \doxygen{otb}{SOMClassifier} class for performing a classification
// using an existing Kohonen's Self Organizing. Actually, the SOM
// classification consists only in the attribution of the winner
// neuron index to a given feature vector.
//
// We will use the SOM created in section \ref{sec:SOMColorTable} and
// we will assume that each neuron represents a class in the image.
//
// The first thing to do is include the header file for the
// class.
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "otbSOMClassifier.h"
// Software Guide : EndCodeSnippet

int main(int argc, char* argv[])
{

  if (argc != 4)
    {
    std::cout << "Usage : " << argv[0] << " inputImage modelFile outputImage"
              << std::endl;
    return EXIT_FAILURE;
    }

  const char * imageFilename  = argv[1];
  const char * mapFilename  = argv[2];
  const char * outputFilename = argv[3];

  typedef double        InputPixelType;
  typedef unsigned char LabelPixelType;
  const unsigned int Dimension = 2;

  typedef itk::VariableLengthVector<InputPixelType> PixelType;

//  Software Guide : BeginLatex
//
// As for the SOM learning step, we must define the types for the
// \code{otb::SOMMap}, and therefore, also for the distance to be
// used. We will also define the type for the SOM reader, which is
// actually an \subdoxygen{otb}{ImageFileReader} which the appropriate
// image type.
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef itk::Statistics::EuclideanDistanceMetric<PixelType>   DistanceType;
  typedef otb::SOMMap<PixelType, DistanceType, Dimension> SOMMapType;
  typedef otb::ImageFileReader<SOMMapType>                SOMReaderType;
// Software Guide : EndCodeSnippet

  typedef otb::VectorImage<InputPixelType, Dimension> InputImageType;
  typedef otb::ImageFileReader<InputImageType>        ReaderType;

//  Software Guide : BeginLatex
//
//  The classification will be performed by the
//  \subdoxygen{otb}{SOMClassifier}, which, as most of the
//  classifiers, works on
//  \subdoxygen{itk}{Statistics}{ListSample}s. In order to be able
//  to perform an image classification, we will need to use the
//  \subdoxygen{itk}{Statistics}{ImageToListAdaptor} which is
//  templated over the type of image to be adapted. The
//  \code{SOMClassifier} is templated over the sample type, the SOMMap
//  type and the pixel type for the labels.
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef itk::Statistics::ListSample<PixelType> SampleType;
  typedef otb::SOMClassifier<SampleType, SOMMapType, LabelPixelType>
  ClassifierType;
// Software Guide : EndCodeSnippet
//
//  Software Guide : BeginLatex
//
//  The result of the classification will be stored on an image and
//  saved to a file. Therefore, we define the types needed for this step.
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef otb::Image<LabelPixelType, Dimension> OutputImageType;
  typedef otb::ImageFileWriter<OutputImageType> WriterType;
// Software Guide : EndCodeSnippet
//
//  Software Guide : BeginLatex
//
//  We can now start reading the input image and the SOM given as
//  inputs to the program. We instantiate the readers as usual.
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName(imageFilename);
  reader->Update();

  SOMReaderType::Pointer somreader = SOMReaderType::New();
  somreader->SetFileName(mapFilename);
  somreader->Update();
// Software Guide : EndCodeSnippet
//
//  Software Guide : BeginLatex
//
//  The conversion of the input data from image to list sample is
//  easily done using the adaptor.
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  SampleType::Pointer sample = SampleType::New();

  itk::ImageRegionIterator<InputImageType> it(reader->GetOutput(),
                                              reader->GetOutput()->
                                              GetLargestPossibleRegion());

  sample->SetMeasurementVectorSize(reader->GetOutput()->GetNumberOfComponentsPerPixel());
  it.GoToBegin();

  while (!it.IsAtEnd())
    {
    sample->PushBack(it.Get());
    ++it;
    }
// Software Guide : EndCodeSnippet
//
//  Software Guide : BeginLatex
//
//  The classifier can now be instantiated. The input data is set by
//  using the \code{SetSample()} method and the SOM si set using the
//  \code{SetMap()} method. The classification is triggered by using
//  the \code{Update()} method.
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  ClassifierType::Pointer classifier = ClassifierType::New();
  classifier->SetSample(sample.GetPointer());
  classifier->SetMap(somreader->GetOutput());
  classifier->Update();
// Software Guide : EndCodeSnippet
//
//  Software Guide : BeginLatex
//
//  Once the classification has been performed, the sample list
//  obtained at the output of the classifier must be converted into an
//  image. We create the image as follows :
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  OutputImageType::Pointer outputImage = OutputImageType::New();
  outputImage->SetRegions(reader->GetOutput()->GetLargestPossibleRegion());
  outputImage->Allocate();
// Software Guide : EndCodeSnippet
//
//  Software Guide : BeginLatex
//
//  We can  now get a pointer to the classification result.
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  ClassifierType::OutputType* membershipSample = classifier->GetOutput();
// Software Guide : EndCodeSnippet
//
//  Software Guide : BeginLatex
//
//  And we can declare the iterators pointing to the front and the
//  back of the sample list.
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  ClassifierType::OutputType::ConstIterator m_iter =  membershipSample->Begin();
  ClassifierType::OutputType::ConstIterator m_last =  membershipSample->End();
// Software Guide : EndCodeSnippet
//
//  Software Guide : BeginLatex
//
//  We also declare an \subdoxygen{itk}{ImageRegionIterator} in order
//  to fill the output image with the class labels.
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef itk::ImageRegionIterator<OutputImageType> OutputIteratorType;

  OutputIteratorType outIt(outputImage, outputImage->GetLargestPossibleRegion());
// Software Guide : EndCodeSnippet
//
//  Software Guide : BeginLatex
//
//  We iterate through the sample list and the output image and assign
//  the label values to the image pixels.
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  outIt.GoToBegin();

  while (m_iter != m_last && !outIt.IsAtEnd())
    {
    outIt.Set(m_iter.GetClassLabel());
    ++m_iter;
    ++outIt;
    }
// Software Guide : EndCodeSnippet
//
//  Software Guide : BeginLatex
//
//  Finally, we write the classified image to a file.
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  WriterType::Pointer writer = WriterType::New();
  writer->SetFileName(outputFilename);
  writer->SetInput(outputImage);
  writer->Update();
// Software Guide : EndCodeSnippet
//  Software Guide : BeginLatex
// Figure \ref{fig:SOMMAPCLASS} shows the result of the SOM classification.
// \begin{figure}
// \center
// \includegraphics[width=0.35\textwidth]{ROI_QB_MUL_1.eps}
// \includegraphics[width=0.2\textwidth]{ROI_QB_MUL_SOM.eps}
// \includegraphics[width=0.35\textwidth]{ROI_QB_MUL_SOMCLASS.eps}
// \itkcaption[SOM Image Classification]{Result of the SOM
// learning. Left: RGB image. Center: SOM. Right: Classified Image}
// \label{fig:SOMMAPCLASS}
// \end{figure}
//  Software Guide : EndLatex

  return EXIT_SUCCESS;
}