1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
/*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
Copyright (c) Institut Mines-Telecom. All rights reserved.
See IMTCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include <fstream>
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbImage.h"
#include "otbVectorImage.h"
// Software Guide : BeginLatex
// This example illustrates the modifications to be added to use the
// \doxygen{otb}{SVMClassifier} class for performing SVM
// classification on images with a user-defined kernel.
// In this example, we will use an SVM model estimated in the previous
// section to separate between water and non-water pixels by using the RGB
// values only.
// The first thing to do is include the header file for the
// class as well as the header of the appropriated kernel to be used.
//
//
// Software Guide : EndLatex
#include "itkImageToListSampleAdaptor.h"
// Software Guide : BeginCodeSnippet
#include "otbSVMClassifier.h"
#include "otbMixturePolyRBFKernelFunctor.h"
// Software Guide : EndCodeSnippet
int main(int argc, char* argv[])
{
if (argc != 4)
{
std::cout << "Usage : " << argv[0]
<< " inputImage outputImage modelFile " << std::endl;
return EXIT_FAILURE;
}
const char * imageFilename = argv[1];
const char * modelFilename = argv[3];
const char * outputFilename = argv[2];
typedef double PixelType;
typedef int LabelPixelType;
const unsigned int Dimension = 2;
typedef otb::Image<itk::FixedArray<PixelType, 3>,
Dimension> InputImageType;
typedef otb::ImageFileReader<InputImageType> ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(imageFilename);
reader->Update();
typedef itk::Statistics::ImageToListSampleAdaptor<InputImageType> SampleType;
SampleType::Pointer sample = SampleType::New();
sample->SetImage(reader->GetOutput());
// Software Guide : BeginLatex
//
// We need to declare the SVM model which is to be used by the
// classifier. The SVM model is templated over the type of value used
// for the measures and the type of pixel used for the labels.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::SVMModel<PixelType, LabelPixelType> ModelType;
ModelType::Pointer model = ModelType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// After instantiation, we can load a model saved to a file (see
// section \ref{ssec:LearningFromImages} for an example of model
// estimation and storage to a file).
//
// When using a user defined kernel, an explicit instantiation has
// to be performed.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
otb::MixturePolyRBFKernelFunctor myKernel;
model->SetKernelFunctor(&myKernel);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, the rest of the classification program remains unchanged.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
model->LoadModel(modelFilename);
// Software Guide : EndCodeSnippet
typedef otb::SVMClassifier<SampleType, LabelPixelType> ClassifierType;
ClassifierType::Pointer classifier = ClassifierType::New();
int numberOfClasses = model->GetNumberOfClasses();
classifier->SetNumberOfClasses(numberOfClasses);
classifier->SetModel(model);
classifier->SetInput(sample.GetPointer());
classifier->Update();
typedef ClassifierType::ClassLabelType OutputPixelType;
typedef otb::Image<OutputPixelType, Dimension> OutputImageType;
OutputImageType::Pointer outputImage = OutputImageType::New();
typedef itk::Index<Dimension> myIndexType;
typedef itk::Size<Dimension> mySizeType;
typedef itk::ImageRegion<Dimension> myRegionType;
mySizeType size;
size[0] = reader->GetOutput()->GetRequestedRegion().GetSize()[0];
size[1] = reader->GetOutput()->GetRequestedRegion().GetSize()[1];
myIndexType start;
start[0] = 0;
start[1] = 0;
myRegionType region;
region.SetIndex(start);
region.SetSize(size);
outputImage->SetRegions(region);
outputImage->Allocate();
ClassifierType::OutputType* membershipSample =
classifier->GetOutput();
ClassifierType::OutputType::ConstIterator m_iter =
membershipSample->Begin();
ClassifierType::OutputType::ConstIterator m_last =
membershipSample->End();
typedef itk::ImageRegionIterator<OutputImageType> OutputIteratorType;
OutputIteratorType outIt(outputImage,
outputImage->GetBufferedRegion());
outIt.GoToBegin();
while (m_iter != m_last && !outIt.IsAtEnd())
{
outIt.Set(m_iter.GetClassLabel());
++m_iter;
++outIt;
}
typedef otb::Image<unsigned char, Dimension> FileImageType;
typedef itk::RescaleIntensityImageFilter<OutputImageType,
FileImageType> RescalerType;
RescalerType::Pointer rescaler = RescalerType::New();
rescaler->SetOutputMinimum(itk::NumericTraits<unsigned char>::min());
rescaler->SetOutputMaximum(itk::NumericTraits<unsigned char>::max());
rescaler->SetInput(outputImage);
typedef otb::ImageFileWriter<FileImageType> WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(outputFilename);
writer->SetInput(rescaler->GetOutput());
writer->Update();
return EXIT_SUCCESS;
}
|