1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
/*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
Copyright (c) Institut Mines-Telecom. All rights reserved.
See IMTCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
// Software Guide : BeginLatex
// This example illustrates the modifications to be added to the
// use of \doxygen{otb}{SVMImageModelEstimator} in order to add a
// user defined kernel. This initial program has been explained in section
// \ref{ssec:LearningFromImages}.
//
// The first thing to do is to include the header file for the new kernel.
//
// Software Guide : EndLatex
#include "itkMacro.h"
#include "otbImage.h"
#include "otbVectorImage.h"
#include <iostream>
// Software Guide : BeginCodeSnippet
#include "otbSVMImageModelEstimator.h"
#include "otbMixturePolyRBFKernelFunctor.h"
// Software Guide : EndCodeSnippet
#include "otbImageFileReader.h"
int main(int argc, char* argv[])
{
if (argc != 4)
{
std::cerr << "Usage : " << argv[0] << " inputImage mask modelFile\n";
return EXIT_FAILURE;
}
const char* inputImageFileName = argv[1];
const char* trainingImageFileName = argv[2];
const char* outputModelFileName = argv[3];
typedef unsigned char InputPixelType;
const unsigned int Dimension = 2;
typedef otb::VectorImage<InputPixelType, Dimension> InputImageType;
typedef otb::Image<InputPixelType, Dimension> TrainingImageType;
typedef otb::SVMImageModelEstimator<InputImageType,
TrainingImageType> EstimatorType;
typedef otb::ImageFileReader<InputImageType> InputReaderType;
typedef otb::ImageFileReader<TrainingImageType> TrainingReaderType;
InputReaderType::Pointer inputReader = InputReaderType::New();
TrainingReaderType::Pointer trainingReader = TrainingReaderType::New();
inputReader->SetFileName(inputImageFileName);
trainingReader->SetFileName(trainingImageFileName);
inputReader->Update();
trainingReader->Update();
// Software Guide : BeginLatex
//
// Once the \doxygen{otb}{SVMImageModelEstimator} is instantiated,
// it is possible to add the new kernel and its parameters.
//
// Then in addition to the initial code:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
EstimatorType::Pointer svmEstimator = EstimatorType::New();
svmEstimator->SetSVMType(C_SVC);
svmEstimator->SetInputImage(inputReader->GetOutput());
svmEstimator->SetTrainingImage(trainingReader->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The instantiation of the kernel is to be implemented. The kernel which is
// used here is a linear combination of a polynomial kernel and an RBF one.
// It is written as $$\mu k_1(x, y) + (1-\mu) k_2(x, y)$$ with
// $k_1(x, y)=\left( \gamma_1 x\cdot y + c_0 \right) ^d$ and
// $k_2(x, y) = \exp\left( - \gamma_2 \| x-y\|^2 \right)$. Then, the specific
// parameters of this kernel are:
// \begin{itemize}
// \item \code{Mixture} ($\mu$),
// \item \code{GammaPoly} ($\gamma_1$),
// \item \code{CoefPoly} ($c_0$),
// \item \code{DegreePoly} ($d$),
// \item \code{GammaRBF} ($\gamma_2$).
// \end{itemize}
// Their instantiations are achieved through the use of the \code{SetValue}
// function.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
otb::MixturePolyRBFKernelFunctor myKernel;
myKernel.SetValue("Mixture", 0.5);
myKernel.SetValue("GammaPoly", 1.0);
myKernel.SetValue("CoefPoly", 0.0);
myKernel.SetValue("DegreePoly", 1);
myKernel.SetValue("GammaRBF", 1.5);
myKernel.Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Once the kernel's parameters are affected and the kernel updated,
// the connection to \doxygen{otb}{SVMImageModelEstimator} takes place here.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
svmEstimator->SetKernelFunctor(&myKernel);
svmEstimator->SetKernelType(GENERIC);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The model estimation procedure is triggered by calling the
// estimator's \code{Update} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
svmEstimator->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The rest of the code remains unchanged...
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
svmEstimator->SaveModel(outputModelFileName);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the file \code{outputModelFileName} a specific line will appear when using a
// generic kernel. It gives the name of the kernel and its parameters name and value.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|