File: SVMGenericKernelImageModelEstimatorExample.cxx

package info (click to toggle)
otb 5.8.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,496 kB
  • ctags: 40,282
  • sloc: cpp: 306,573; ansic: 3,575; python: 450; sh: 214; perl: 74; java: 72; makefile: 70
file content (166 lines) | stat: -rw-r--r-- 5,181 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.

  Copyright (c) Institut Mines-Telecom. All rights reserved.
  See IMTCopyright.txt for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/


//  Software Guide : BeginLatex
// This example illustrates the modifications to be added to the
// use of \doxygen{otb}{SVMImageModelEstimator} in order to add a
// user defined kernel. This initial program has been explained in section
// \ref{ssec:LearningFromImages}.
//
// The first thing to do is to include the header file for the new kernel.
//
//  Software Guide : EndLatex

#include "itkMacro.h"
#include "otbImage.h"
#include "otbVectorImage.h"
#include <iostream>

//  Software Guide : BeginCodeSnippet
#include "otbSVMImageModelEstimator.h"
#include "otbMixturePolyRBFKernelFunctor.h"
//  Software Guide : EndCodeSnippet

#include "otbImageFileReader.h"

int main(int argc, char* argv[])
{

  if (argc != 4)
    {
    std::cerr << "Usage : " << argv[0] << " inputImage mask modelFile\n";
    return EXIT_FAILURE;
    }

  const char* inputImageFileName = argv[1];
  const char* trainingImageFileName = argv[2];
  const char* outputModelFileName = argv[3];

  typedef unsigned char InputPixelType;
  const unsigned int Dimension = 2;

  typedef otb::VectorImage<InputPixelType,  Dimension> InputImageType;

  typedef otb::Image<InputPixelType,  Dimension> TrainingImageType;

  typedef otb::SVMImageModelEstimator<InputImageType,
      TrainingImageType>   EstimatorType;

  typedef otb::ImageFileReader<InputImageType>    InputReaderType;
  typedef otb::ImageFileReader<TrainingImageType> TrainingReaderType;

  InputReaderType::Pointer    inputReader = InputReaderType::New();
  TrainingReaderType::Pointer trainingReader = TrainingReaderType::New();

  inputReader->SetFileName(inputImageFileName);
  trainingReader->SetFileName(trainingImageFileName);

  inputReader->Update();
  trainingReader->Update();

//  Software Guide : BeginLatex
//
//  Once the \doxygen{otb}{SVMImageModelEstimator} is instantiated,
//  it is possible to add the new kernel and its parameters.
//
//  Then in addition to the initial code:
//
// Software Guide : EndLatex
//  Software Guide : BeginCodeSnippet
  EstimatorType::Pointer svmEstimator = EstimatorType::New();

  svmEstimator->SetSVMType(C_SVC);
  svmEstimator->SetInputImage(inputReader->GetOutput());
  svmEstimator->SetTrainingImage(trainingReader->GetOutput());

//  Software Guide : EndCodeSnippet

//  Software Guide : BeginLatex
//
//  The instantiation of the kernel is to be implemented. The kernel which is
//  used here is a linear combination of a polynomial kernel and an RBF one.
//  It is written as $$\mu k_1(x, y) + (1-\mu) k_2(x, y)$$ with
//  $k_1(x, y)=\left( \gamma_1 x\cdot y + c_0 \right) ^d$ and
//  $k_2(x, y) = \exp\left( - \gamma_2 \| x-y\|^2 \right)$. Then, the specific
//  parameters of this kernel are:
//  \begin{itemize}
//  \item \code{Mixture} ($\mu$),
//  \item \code{GammaPoly} ($\gamma_1$),
//  \item \code{CoefPoly} ($c_0$),
//  \item \code{DegreePoly} ($d$),
//  \item \code{GammaRBF} ($\gamma_2$).
//  \end{itemize}
//  Their instantiations are achieved through the use of the \code{SetValue}
//  function.
//
//  Software Guide : EndLatex

//  Software Guide : BeginCodeSnippet
  otb::MixturePolyRBFKernelFunctor myKernel;
  myKernel.SetValue("Mixture", 0.5);
  myKernel.SetValue("GammaPoly", 1.0);
  myKernel.SetValue("CoefPoly", 0.0);
  myKernel.SetValue("DegreePoly", 1);
  myKernel.SetValue("GammaRBF", 1.5);
  myKernel.Update();
//  Software Guide : EndCodeSnippet

//  Software Guide : BeginLatex
//
//  Once the kernel's parameters are affected and the kernel updated,
//  the connection to \doxygen{otb}{SVMImageModelEstimator} takes place here.
//
//  Software Guide : EndLatex

//  Software Guide : BeginCodeSnippet
  svmEstimator->SetKernelFunctor(&myKernel);
  svmEstimator->SetKernelType(GENERIC);
//  Software Guide : EndCodeSnippet

//  Software Guide : BeginLatex
//
//  The model estimation procedure is triggered by calling the
//  estimator's \code{Update} method.
//
// Software Guide : EndLatex
//  Software Guide : BeginCodeSnippet
  svmEstimator->Update();

//  Software Guide : EndCodeSnippet

//  Software Guide : BeginLatex
//
//  The rest of the code remains unchanged...
//
//  Software Guide : EndLatex
//  Software Guide : BeginCodeSnippet
  svmEstimator->SaveModel(outputModelFileName);
//  Software Guide : EndCodeSnippet

//  Software Guide : BeginLatex
//
//  In the file \code{outputModelFileName} a specific line will appear when using a
//  generic kernel. It gives the name of the kernel and its parameters name and value.
//
//  Software Guide : EndLatex

  return EXIT_SUCCESS;
}