File: SVMImageClassificationExample.cxx

package info (click to toggle)
otb 5.8.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,496 kB
  • ctags: 40,282
  • sloc: cpp: 306,573; ansic: 3,575; python: 450; sh: 214; perl: 74; java: 72; makefile: 70
file content (334 lines) | stat: -rw-r--r-- 10,273 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/


#include <fstream>

#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbImage.h"

//  Software Guide : BeginCommandLineArgs
//    INPUTS: {ROI_QB_MUL_1.png}
//    OUTPUTS: {ROI_QB_MUL_1_SVN_CLASS.png}
//    ${OTB_DATA_ROOT}/Examples/svm_image_model.svm
//  Software Guide : EndCommandLineArgs

//  Software Guide : BeginLatex
// This example illustrates the use of the
// \doxygen{otb}{SVMClassifier} class for performing SVM
// classification on images.
// In this example, we will use an SVM model estimated in the example
// of section \ref{sec:LearningWithImages}
// to separate between water and non-water pixels by using the RGB
// values only. The images used for this example are shown in
// figure~\ref{fig:SVMROIS}.
// The first thing to do is include the header file for the
// class. Since the \doxygen{otb}{SVMClassifier} takes
// \doxygen{itk}{ListSample}s as input, the class
// \doxygen{itk}{PointSetToListAdaptor} is needed.
//
//
//  Software Guide : EndLatex

#include "itkImageToListSampleAdaptor.h"

// Software Guide : BeginCodeSnippet
#include "otbSVMClassifier.h"
// Software Guide : EndCodeSnippet

int main(int argc, char* argv[])
{

  if (argc != 4)
    {
    std::cout << "Usage : " << argv[0] << " inputImage outputImage modelFile "
              << std::endl;
    return EXIT_FAILURE;
    }

  const char * imageFilename  = argv[1];
  const char * modelFilename  = argv[3];
  const char * outputFilename = argv[2];

// Software Guide : BeginLatex
//
// In the framework of supervised learning and classification, we will
// always use feature vectors for the characterization of the
// classes. On the other hand, the class labels are scalar
// values. Here, we start by defining the type of the features as the
// \code{PixelType}, which will be used to define the feature
// \code{VectorType}. We also declare the type for the labels.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef double                 PixelType;
  typedef int                    LabelPixelType;
// Software Guide : EndCodeSnippet
  const unsigned int Dimension = 2;

// Software Guide : BeginLatex
//
// We can now proceed to define the image type used for storing the
// features. We also define the reader.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef otb::Image<itk::FixedArray<PixelType, 3>,
      Dimension>          InputImageType;

  typedef otb::ImageFileReader<InputImageType> ReaderType;
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// We can now read the image by calling the \code{Update} method of the reader.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  ReaderType::Pointer reader = ReaderType::New();

  reader->SetFileName(imageFilename);

  reader->Update();
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// The image has now to be transformed to a sample which
// is compatible with the classification framework. We will use a
// \doxygen{itk}{Statistics::ImageToListSampleAdaptor} for this
// task. This class is templated over the image type used for
// storing the measures.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef itk::Statistics::ImageToListSampleAdaptor<InputImageType> SampleType;
  SampleType::Pointer sample = SampleType::New();
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// After instantiation, we can set the image as an imput of our
// sample adaptor.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  sample->SetImage(reader->GetOutput());
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// Now, we need to declare the SVM model which is to be used by the
// classifier. The SVM model is templated over the type of value used
// for the measures and the type of pixel used for the labels.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef otb::SVMModel<PixelType, LabelPixelType> ModelType;

  ModelType::Pointer model = ModelType::New();
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// After instantiation, we can load a model saved to a file (see
// section \ref{sec:LearningWithImages} for an example of model
// estimation and storage to a file.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  model->LoadModel(modelFilename);
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// We have now all the elements to create a classifier. The classifier
// is templated over the sample type (the type of the data to be
// classified) and the label type (the type of the output of the classifier).
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef otb::SVMClassifier<SampleType, LabelPixelType> ClassifierType;

  ClassifierType::Pointer classifier = ClassifierType::New();
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// We set the classifier parameters : number of classes, SVM model,
// the sample data. And we trigger the classification process by
// calling the \code{Update} method.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  int numberOfClasses = model->GetNumberOfClasses();
  classifier->SetNumberOfClasses(numberOfClasses);
  classifier->SetModel(model);
  classifier->SetInput(sample.GetPointer());
  classifier->Update();
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// After the classification step, we usually want to get the
// results. The classifier gives an output under the form of a sample
// list. This list supports the classical STL iterators. Therefore, we
// will create an output image and fill it up with the results of the
// classification. The pixel type of the output image is the same as
// the one used for the labels.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef ClassifierType::ClassLabelType         OutputPixelType;
  typedef otb::Image<OutputPixelType, Dimension> OutputImageType;

  OutputImageType::Pointer outputImage = OutputImageType::New();
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// We allocate the memory for the output image using the information
// from the input image.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef itk::Index<Dimension>       myIndexType;
  typedef itk::Size<Dimension>        mySizeType;
  typedef itk::ImageRegion<Dimension> myRegionType;

  mySizeType size;
  size[0] = reader->GetOutput()->GetRequestedRegion().GetSize()[0];
  size[1] = reader->GetOutput()->GetRequestedRegion().GetSize()[1];

  myIndexType start;
  start[0] = 0;
  start[1] = 0;

  myRegionType region;
  region.SetIndex(start);
  region.SetSize(size);

  outputImage->SetRegions(region);
  outputImage->Allocate();
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// We can now declare the iterators on the list that we get at the
// output of the classifier as well as the iterator to fill the output image.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  ClassifierType::OutputType* membershipSample =
    classifier->GetOutput();
  ClassifierType::OutputType::ConstIterator m_iter =
    membershipSample->Begin();
  ClassifierType::OutputType::ConstIterator m_last =
    membershipSample->End();

  typedef itk::ImageRegionIterator<OutputImageType> OutputIteratorType;
  OutputIteratorType outIt(outputImage,
                           outputImage->GetBufferedRegion());

  outIt.GoToBegin();
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// We will iterate through the list, get the labels and assign pixel
// values to the output image.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  while (m_iter != m_last && !outIt.IsAtEnd())
    {
    outIt.Set(m_iter.GetClassLabel());
    ++m_iter;
    ++outIt;
    }
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// Only for visualization purposes, we choose to rescale the image of
// classes before saving it to a file. We will use the
// \doxygen{itk}{RescaleIntensityImageFilter} for this purpose.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef otb::Image<unsigned char, Dimension> FileImageType;

  typedef itk::RescaleIntensityImageFilter<OutputImageType,
      FileImageType> RescalerType;

  RescalerType::Pointer rescaler = RescalerType::New();

  rescaler->SetOutputMinimum(itk::NumericTraits<unsigned char>::min());
  rescaler->SetOutputMaximum(itk::NumericTraits<unsigned char>::max());

  rescaler->SetInput(outputImage);
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// We can now create an image file writer and save the image.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef otb::ImageFileWriter<FileImageType> WriterType;

  WriterType::Pointer writer = WriterType::New();

  writer->SetFileName(outputFilename);
  writer->SetInput(rescaler->GetOutput());

  writer->Update();
// Software Guide : EndCodeSnippet

//  Software Guide : BeginLatex
// Figure \ref{fig:SVMCLASS} shows the result of the SVM classification.
// \begin{figure}
// \center
// \includegraphics[width=0.45\textwidth]{ROI_QB_MUL_1.eps}
// \includegraphics[width=0.45\textwidth]{ROI_QB_MUL_1_SVN_CLASS.eps}
// \itkcaption[SVM Image Classification]{Result of the SVM
// classification . Left: RGB image. Right: image of classes.}
// \label{fig:SVMCLASS}
// \end{figure}
//  Software Guide : EndLatex

  return EXIT_SUCCESS;
}