1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
/*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {ROI_QB_MUL_1.png}, {ROI_mask_multi.png}
// OUTPUTS: {ROI_QB_MUL_1_SVN_CLASS_MULTI.png}, {ROI_QB_MUL_1_SVN_CLASS_MULTI_Rescaled.jpg}
// NORMALIZE_EPS_OUTPUT_OF: {ROI_mask_multi.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
// This example illustrates the OTB's multi-class SVM
// capabilities. The theory behind this kind of classification is out
// of the scope of this guide. In OTB, the multi-class SVM
// classification is used in the same way as the two-class
// one. Figure~\ref{fig:SVMROISMULTI} shows the image to be classified
// and the associated ground truth, which is composed of 4 classes.
// \begin{figure}
// \center
// \includegraphics[width=0.45\textwidth]{ROI_QB_MUL_1.eps}
// \includegraphics[width=0.45\textwidth]{ROI_mask_multi.eps}
// \itkcaption[SVM Image Model Estimation]{Images used for the
// estimation of the SVM model. Left: RGB image. Right: image of labels.}
// \label{fig:SVMROISMULTI}
// \end{figure}
// The following header files are needed for the program:
// Software Guide : EndLatex
#include "itkMacro.h"
#include "otbImage.h"
#include "otbVectorImage.h"
#include <iostream>
// Software Guide : BeginCodeSnippet
#include "otbSVMImageModelEstimator.h"
#include "itkImageToListSampleAdaptor.h"
#include "otbSVMClassifier.h"
// Software Guide : EndCodeSnippet
#include "otbImageFileWriter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkScalarToRGBPixelFunctor.h"
#include "otbImageFileReader.h"
int main(int itkNotUsed(argc), char *argv[])
{
const char* inputImageFileName = argv[1];
const char* trainingImageFileName = argv[2];
const char* outputImageFileName = argv[3];
const char* outputRescaledImageFileName = argv[4];
// const char* outputModelFileName = argv[4];
// Software Guide : BeginLatex
//
// We define the types for the input and training images. Even if the
// input image will be an RGB image, we can read it as a 3 component
// vector image. This simplifies the interfacing with OTB's SVM
// framework.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned short InputPixelType;
const unsigned int Dimension = 2;
typedef otb::VectorImage<InputPixelType, Dimension> InputImageType;
typedef otb::Image<InputPixelType, Dimension> TrainingImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \doxygen{otb}{SVMImageModelEstimator} class is templated over
// the input (features) and the training (labels) images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::SVMImageModelEstimator<InputImageType,
TrainingImageType> EstimatorType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// As usual, we define the readers for the images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::ImageFileReader<InputImageType> InputReaderType;
typedef otb::ImageFileReader<TrainingImageType> TrainingReaderType;
InputReaderType::Pointer inputReader = InputReaderType::New();
TrainingReaderType::Pointer trainingReader = TrainingReaderType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We read the images. It is worth to note that, in order to ensure
// the pipeline coherence, the output of the objects which precede the
// model estimator in the pipeline, must be up to date, so we call
// the corresponding \code{Update} methods.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
inputReader->SetFileName(inputImageFileName);
trainingReader->SetFileName(trainingImageFileName);
inputReader->Update();
trainingReader->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now instantiate the model estimator and set its parameters.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
EstimatorType::Pointer svmEstimator = EstimatorType::New();
svmEstimator->SetInputImage(inputReader->GetOutput());
svmEstimator->SetTrainingImage(trainingReader->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The model estimation procedure is triggered by calling the
// estimator's \code{Update} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
svmEstimator->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now proceed to the image classification. We start by
// declaring the type of the image to be classified. ITK's
// classification framework needs the type of the pixel to be of
// fixed type, so we declare the following types.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::Image<itk::FixedArray<InputPixelType, 3>,
Dimension> ClassifyImageType;
typedef otb::ImageFileReader<ClassifyImageType> ClassifyReaderType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now read the image by calling the \code{Update} method of the reader.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ClassifyReaderType::Pointer cReader = ClassifyReaderType::New();
cReader->SetFileName(inputImageFileName);
cReader->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The image has now to be transformed to a sample which
// is compatible with the classification framework. We will use a
// \doxygen{itk}{Statistics::ImageToListSampleAdaptor} for this
// task. This class is templated over the image type used for
// storing the measures.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Statistics::ImageToListSampleAdaptor<ClassifyImageType> SampleType;
SampleType::Pointer sample = SampleType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// After instantiation, we can set the image as an imput of our
// sample adaptor.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
sample->SetImage(cReader->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now, we need to declare the SVM model which is to be used by the
// classifier. The SVM model is templated over the type of value used
// for the measures and the type of pixel used for the labels. The
// model is obtained from the model estimator by calling the
// \code{GetModel} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef InputPixelType LabelPixelType;
typedef otb::SVMModel<InputPixelType, LabelPixelType> ModelType;
ModelType::Pointer model = svmEstimator->GetModel();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We have now all the elements to create a classifier. The classifier
// is templated over the sample type (the type of the data to be
// classified) and the label type (the type of the output of the classifier).
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::SVMClassifier<SampleType, LabelPixelType> ClassifierType;
ClassifierType::Pointer classifier = ClassifierType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We set the classifier parameters : number of classes, SVM model,
// the sample data. And we trigger the classification process by
// calling the \code{Update} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
int numberOfClasses = model->GetNumberOfClasses();
classifier->SetNumberOfClasses(numberOfClasses);
classifier->SetModel(model);
classifier->SetInput(sample.GetPointer());
classifier->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// After the classification step, we usually want to get the
// results. The classifier gives an output under the form of a sample
// list. This list supports the classical STL iterators. Therefore, we
// will create an output image and fill it up with the results of the
// classification. The pixel type of the output image is the same as
// the one used for the labels.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef ClassifierType::ClassLabelType OutputPixelType;
typedef otb::Image<OutputPixelType, Dimension> OutputImageType;
OutputImageType::Pointer outputImage = OutputImageType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We allocate the memory for the output image using the information
// from the input image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Index<Dimension> myIndexType;
typedef itk::Size<Dimension> mySizeType;
typedef itk::ImageRegion<Dimension> myRegionType;
mySizeType size;
size[0] = cReader->GetOutput()->GetRequestedRegion().GetSize()[0];
size[1] = cReader->GetOutput()->GetRequestedRegion().GetSize()[1];
myIndexType start;
start[0] = 0;
start[1] = 0;
myRegionType region;
region.SetIndex(start);
region.SetSize(size);
outputImage->SetRegions(region);
outputImage->Allocate();
std::cout << "---" << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now declare the iterators on the list that we get at the
// output of the classifier as well as the iterator to fill the output image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ClassifierType::OutputType* membershipSample =
classifier->GetOutput();
ClassifierType::OutputType::ConstIterator m_iter =
membershipSample->Begin();
ClassifierType::OutputType::ConstIterator m_last =
membershipSample->End();
typedef itk::ImageRegionIterator<OutputImageType> OutputIteratorType;
OutputIteratorType outIt(outputImage,
outputImage->GetBufferedRegion());
outIt.GoToBegin();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We will iterate through the list, get the labels and assign pixel
// values to the output image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
while (m_iter != m_last && !outIt.IsAtEnd())
{
outIt.Set(m_iter.GetClassLabel());
++m_iter;
++outIt;
}
std::cout << "---" << std::endl;
// Software Guide : EndCodeSnippet
typedef otb::ImageFileWriter<OutputImageType> WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(outputImageFileName);
writer->SetInput(outputImage);
writer->Update();
// Software Guide : BeginLatex
//
// Only for visualization purposes, we choose a color mapping to the image of
// classes before saving it to a file. The
// \subdoxygen{itk}{Functor}{ScalarToRGBPixelFunctor} class is a special
// function object designed to hash a scalar value into an
// \doxygen{itk}{RGBPixel}. Plugging this functor into the
// \doxygen{itk}{UnaryFunctorImageFilter} creates an image filter for that
// converts scalar images to RGB images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::RGBPixel<unsigned char> RGBPixelType;
typedef otb::Image<RGBPixelType, 2> RGBImageType;
typedef itk::Functor::ScalarToRGBPixelFunctor<unsigned long>
ColorMapFunctorType;
typedef itk::UnaryFunctorImageFilter<OutputImageType,
RGBImageType,
ColorMapFunctorType> ColorMapFilterType;
ColorMapFilterType::Pointer colormapper = ColorMapFilterType::New();
colormapper->SetInput(outputImage);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now create an image file writer and save the image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::ImageFileWriter<RGBImageType> WriterRescaledType;
WriterRescaledType::Pointer writerRescaled = WriterRescaledType::New();
writerRescaled->SetFileName(outputRescaledImageFileName);
writerRescaled->SetInput(colormapper->GetOutput());
writerRescaled->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
// Figure \ref{fig:SVMCLASSMULTI} shows the result of the SVM classification.
// \begin{figure}
// \center
// \includegraphics[width=0.45\textwidth]{ROI_QB_MUL_1.eps}
// \includegraphics[width=0.45\textwidth]{ROI_QB_MUL_1_SVN_CLASS_MULTI_Rescaled.eps}
// \itkcaption[SVM Image Classification]{Result of the SVM
// classification . Left: RGB image. Right: image of classes.}
// \label{fig:SVMCLASSMULTI}
// \end{figure}
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|