1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
/*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {ROI_QB_MUL_1.png}, {ROI_mask.png}
// OUTPUTS: {svm_image_model.svn}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
// This example illustrates the use of the
// \doxygen{otb}{SVMImageModelEstimator} class. This class allows the
// estimation of a SVM model (supervised learning) from a feature
// image and an image of labels. In this example, we will train an SVM
// to separate between water and non-water pixels by using the RGB
// values only. The images used for this example are shown in
// figure~\ref{fig:SVMROIS}.
// \begin{figure}
// \center
// \includegraphics[width=0.45\textwidth]{ROI_QB_MUL_1.eps}
// \includegraphics[width=0.45\textwidth]{ROI_mask.eps}
// \itkcaption[SVM Image Model Estimation]{Images used for the
// estimation of the SVM model. Left: RGB image. Right: image of labels.}
// \label{fig:SVMROIS}
// \end{figure}
// The first thing to do is include the header file for the class.
//
// Software Guide : EndLatex
#include "itkMacro.h"
#include "otbImage.h"
#include "otbVectorImage.h"
#include <iostream>
// Software Guide : BeginCodeSnippet
#include "otbSVMImageModelEstimator.h"
// Software Guide : EndCodeSnippet
#include "otbImageFileReader.h"
int main(int itkNotUsed(argc), char* argv[])
{
const char* inputImageFileName = argv[1];
const char* trainingImageFileName = argv[2];
const char* outputModelFileName = argv[3];
// Software Guide : BeginLatex
//
// We define the types for the input and training images. Even if the
// input image will be an RGB image, we can read it as a 3 component
// vector image. This simplifies the interfacing with OTB's SVM
// framework.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char InputPixelType;
const unsigned int Dimension = 2;
typedef otb::VectorImage<InputPixelType, Dimension> InputImageType;
typedef otb::Image<InputPixelType, Dimension> TrainingImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \doxygen{otb}{SVMImageModelEstimator} class is templated over
// the input (features) and the training (labels) images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::SVMImageModelEstimator<InputImageType,
TrainingImageType> EstimatorType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// As usual, we define the readers for the images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::ImageFileReader<InputImageType> InputReaderType;
typedef otb::ImageFileReader<TrainingImageType> TrainingReaderType;
InputReaderType::Pointer inputReader = InputReaderType::New();
TrainingReaderType::Pointer trainingReader = TrainingReaderType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We read the images. It is worth to note that, in order to ensure
// the pipeline coherence, the output of the objects which precede the
// model estimator in the pipeline, must be up to date, so we call
// the corresponding \code{Update} methods.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
inputReader->SetFileName(inputImageFileName);
trainingReader->SetFileName(trainingImageFileName);
inputReader->Update();
trainingReader->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now instantiate the model estimator and set its parameters.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
EstimatorType::Pointer svmEstimator = EstimatorType::New();
svmEstimator->SetInputImage(inputReader->GetOutput());
svmEstimator->SetTrainingImage(trainingReader->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The model estimation procedure is triggered by calling the
// estimator's \code{Update} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
svmEstimator->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, the estimated model can be saved to a file for later use.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
svmEstimator->SaveModel(outputModelFileName);
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
|