File: SVMPointSetClassificationExample.cxx

package info (click to toggle)
otb 5.8.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,496 kB
  • ctags: 40,282
  • sloc: cpp: 306,573; ansic: 3,575; python: 450; sh: 214; perl: 74; java: 72; makefile: 70
file content (319 lines) | stat: -rw-r--r-- 9,483 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/


//  Software Guide : BeginCommandLineArgs
//    INPUTS: {svm_model.svn}
//    OUTPUTS:
//  Software Guide : EndCommandLineArgs

#include "itkMacro.h"
#include <iostream>
#include <cstdlib>

//  Software Guide : BeginLatex
// This example illustrates the use of the
// \doxygen{otb}{SVMClassifier} class for performing SVM
// classification on pointsets.
// The first thing to do is include the header file for the
// class. Since the \doxygen{otb}{SVMClassifier} takes
// \doxygen{itk}{ListSample}s as input, the class
// \doxygen{itk}{PointSetToListSampleAdaptor} is needed.
//
// We start by including the needed header files.
//
//  Software Guide : EndLatex

//  Software Guide : BeginCodeSnippet
#include "itkPointSetToListSampleAdaptor.h"
#include "otbSVMClassifier.h"
//  Software Guide : EndCodeSnippet

int main(int itkNotUsed(argc), char* argv[])
{
// Software Guide : BeginLatex
//
// In the framework of supervised learning and classification, we will
// always use feature vectors for the characterization of the
// classes. On the other hand, the class labels are scalar
// values. Here, we start by defining the type of the features as the
// \code{PixelType}, which will be used to define the feature
// \code{VectorType}. We also declare the type for the labels.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef float InputPixelType;

  typedef std::vector<InputPixelType> InputVectorType;
  typedef int                         LabelPixelType;
// Software Guide : EndCodeSnippet
  const unsigned int Dimension = 2;

// Software Guide : BeginLatex
//
// We can now proceed to define the point sets used for storing the
// features and the labels.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef itk::PointSet<InputVectorType,  Dimension> MeasurePointSetType;
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// We will need to get access to the data stored in the point sets, so
// we define the appropriate for the points and the points containers
// used by the point sets (see the section \ref{sec:PointSetSection}
// for more information on how to use point sets).
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef MeasurePointSetType::PointType MeasurePointType;
  typedef MeasurePointSetType::PointsContainer MeasurePointsContainer;

  MeasurePointSetType::Pointer    tPSet = MeasurePointSetType::New();
  MeasurePointsContainer::Pointer tCont = MeasurePointsContainer::New();
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// We need now to build the test set for the SVM. In this
// simple example, we will build a SVM who classes points depending on
// which side of the line $x=y$ they are located. We start by
// generating 500 random points.
//
// Software Guide : EndLatex

  srand(0);

  unsigned int pointId;
// Software Guide : BeginCodeSnippet
  int lowest = 0;
  int range = 1000;

  for (pointId = 0; pointId < 100; pointId++)
    {

    MeasurePointType tP;

    int x_coord = lowest + static_cast<int>(range * (rand() / (RAND_MAX + 1.0)));
    int y_coord = lowest + static_cast<int>(range * (rand() / (RAND_MAX + 1.0)));

    std::cout << "coords : " << x_coord << " " << y_coord << std::endl;
    tP[0] = x_coord;
    tP[1] = y_coord;
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// We push the features in the vector after a normalization which is
// useful for SVM convergence.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
    InputVectorType measure;
    measure.push_back(static_cast<InputPixelType>((x_coord * 1.0 -
                                                   lowest) / range));
    measure.push_back(static_cast<InputPixelType>((y_coord * 1.0 -
                                                   lowest) / range));
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// And we insert the points in the points container.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
    tCont->InsertElement(pointId, tP);
    tPSet->SetPointData(pointId, measure);

    }
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// After the loop, we set the points container to the point set.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  tPSet->SetPoints(tCont);
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// Once the pointset is ready, we must transform it to a sample which
// is compatible with the classification framework. We will use a
// \doxygen{itk}{Statistics::PointSetToListSampleAdaptor} for this
// task. This class is templated over the point set type used for
// storing the measures.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef itk::Statistics::PointSetToListSampleAdaptor<MeasurePointSetType>
  SampleType;
  SampleType::Pointer sample = SampleType::New();
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// After instantiation, we can set the point set as an imput of our
// sample adaptor.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  sample->SetPointSet(tPSet);
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// Now, we need to declare the SVM model which is to be used by the
// classifier. The SVM model is templated over the type of value used
// for the measures and the type of pixel used for the labels.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef otb::SVMModel<SampleType::MeasurementVectorType::ValueType,
      LabelPixelType> ModelType;

  ModelType::Pointer model = ModelType::New();
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// After instantiation, we can load a model saved to a file (see
// section \ref{sec:LearningWithPointSets} for an example of model
// estimation and storage to a file).
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  model->LoadModel(argv[1]);
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// We have now all the elements to create a classifier. The classifier
// is templated over the sample type (the type of the data to be
// classified) and the label type (the type of the output of the classifier).
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef otb::SVMClassifier<SampleType, LabelPixelType> ClassifierType;

  ClassifierType::Pointer classifier = ClassifierType::New();
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// We set the classifier parameters : number of classes, SVM model,
// the sample data. And we trigger the classification process by
// calling the \code{Update} method.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  int numberOfClasses = model->GetNumberOfClasses();
  classifier->SetNumberOfClasses(numberOfClasses);
  classifier->SetModel(model);
  classifier->SetInput(sample.GetPointer());
  classifier->Update();
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// After the classification step, we usually want to get the
// results. The classifier gives an output under the form of a sample
// list. This list supports the classical STL iterators.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  ClassifierType::OutputType* membershipSample =
    classifier->GetOutput();

  ClassifierType::OutputType::ConstIterator m_iter =
    membershipSample->Begin();
  ClassifierType::OutputType::ConstIterator m_last =
    membershipSample->End();
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// We will iterate through the list, get the labels and compute the
// classification error.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  double error = 0.0;
  pointId = 0;
  while (m_iter != m_last)
    {
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// We get the label for each point.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
    ClassifierType::ClassLabelType label = m_iter.GetClassLabel();
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// And we compare it to the corresponding one of the test set.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
    InputVectorType measure;

    tPSet->GetPointData(pointId, &measure);

    ClassifierType::ClassLabelType expectedLabel;
    if (measure[0] < measure[1]) expectedLabel = -1;
    else expectedLabel = 1;

    double dist = fabs(measure[0] - measure[1]);

    if (label != expectedLabel) error++;

    std::cout << int(label) << "/" << int(expectedLabel) << " --- " << dist <<
    std::endl;

    ++pointId;
    ++m_iter;
    }

  std::cout << "Error = " << error / pointId << " % " << std::endl;
// Software Guide : EndCodeSnippet

  return EXIT_SUCCESS;
}