File: SVMPointSetExample.cxx

package info (click to toggle)
otb 5.8.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,496 kB
  • ctags: 40,282
  • sloc: cpp: 306,573; ansic: 3,575; python: 450; sh: 214; perl: 74; java: 72; makefile: 70
file content (216 lines) | stat: -rw-r--r-- 6,334 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/


#include "itkMacro.h"
#include <iostream>
#include <cstdlib>

#include "otbSVMPointSetModelEstimator.h"
#include "itkPointSetToListSampleAdaptor.h"
#include "otbSVMClassifier.h"

int main(int itkNotUsed(argc), char* itkNotUsed(argv)[])
{

  typedef float InputPixelType;

  typedef std::vector<InputPixelType> InputVectorType;
  typedef int                         LabelPixelType;
  const unsigned int Dimension = 2;

  typedef itk::PointSet<InputVectorType,  Dimension> MeasurePointSetType;

  typedef itk::PointSet<LabelPixelType,  Dimension> LabelPointSetType;

  MeasurePointSetType::Pointer mPSet = MeasurePointSetType::New();
  LabelPointSetType::Pointer   lPSet = LabelPointSetType::New();

  typedef MeasurePointSetType::PointType MeasurePointType;
  typedef LabelPointSetType::PointType   LabelPointType;

  typedef MeasurePointSetType::PointsContainer MeasurePointsContainer;
  typedef LabelPointSetType::PointsContainer   LabelPointsContainer;

  MeasurePointsContainer::Pointer mCont = MeasurePointsContainer::New();
  LabelPointsContainer::Pointer   lCont = LabelPointsContainer::New();

  /* We learn the y>x | y<x boundary*/
//  srand((unsigned)time(0));
  srand(0);
  int lowest = 0;
  int range = 1000;

  unsigned int pointId;

  for (pointId = 0; pointId < 500; pointId++)
    {

    MeasurePointType mP;
    LabelPointType   lP;

    int x_coord = lowest + static_cast<int>(range * (rand() / (RAND_MAX + 1.0)));
    int y_coord = lowest + static_cast<int>(range * (rand() / (RAND_MAX + 1.0)));

    std::cout << "coords : " << x_coord << " " << y_coord << std::endl;
    mP[0] = x_coord;
    mP[1] = y_coord;

    lP[0] = x_coord;
    lP[1] = y_coord;

    InputVectorType measure;
    measure.push_back(static_cast<InputPixelType>((x_coord * 1.0 -
                                                   lowest) / range));
    measure.push_back(static_cast<InputPixelType>((y_coord * 1.0 -
                                                   lowest) / range));

    LabelPixelType label;

    if (x_coord < y_coord) label = 0;
    else label = 1;

    std::cout << "Label : " << label << std::endl;
    std::cout << "Measures : " << measure[0] << " " << measure[1] << std::endl;

    mCont->InsertElement(pointId, mP);
    mPSet->SetPointData(pointId, measure);

    lCont->InsertElement(pointId, lP);
    lPSet->SetPointData(pointId, label);

    }

  mPSet->SetPoints(mCont);
  lPSet->SetPoints(lCont);

  typedef otb::SVMPointSetModelEstimator<MeasurePointSetType,
      LabelPointSetType>   EstimatorType;

  EstimatorType::Pointer estimator = EstimatorType::New();

  estimator->SetInputPointSet(mPSet);
  estimator->SetTrainingPointSet(lPSet);

  estimator->Update();

  std::cout << "Saving model" << std::endl;
  estimator->SaveModel("model.svm");

  // Build the test set

  MeasurePointSetType::Pointer    tPSet = MeasurePointSetType::New();
  MeasurePointsContainer::Pointer tCont = MeasurePointsContainer::New();

  for (pointId = 0; pointId < 100; pointId++)
    {

    MeasurePointType tP;

    int x_coord = lowest + static_cast<int>(range * (rand() / (RAND_MAX + 1.0)));
    int y_coord = lowest + static_cast<int>(range * (rand() / (RAND_MAX + 1.0)));

    std::cout << "coords : " << x_coord << " " << y_coord << std::endl;
    tP[0] = x_coord;
    tP[1] = y_coord;

    InputVectorType measure;
    measure.push_back(static_cast<InputPixelType>((x_coord * 1.0 -
                                                   lowest) / range));
    measure.push_back(static_cast<InputPixelType>((y_coord * 1.0 -
                                                   lowest) / range));

    std::cout << "Measures : " << measure[0] << " " << measure[1] << std::endl;

    tCont->InsertElement(pointId, tP);
    tPSet->SetPointData(pointId, measure);

    }

  tPSet->SetPoints(tCont);

  // Classify

  typedef itk::Statistics::PointSetToListSampleAdaptor<MeasurePointSetType>
  SampleType;
  SampleType::Pointer sample = SampleType::New();
  sample->SetPointSet(tPSet);

  std::cout << "Sample set to Adaptor" << std::endl;

  /** preparing classifier and decision rule object */
  typedef otb::SVMModel<SampleType::MeasurementVectorType::ValueType,
      LabelPixelType> ModelType;

  ModelType::Pointer model = estimator->GetModel();

  int numberOfClasses = model->GetNumberOfClasses();

  std::cout << "Classification for " << numberOfClasses << " classes " <<
  std::endl;

  typedef otb::SVMClassifier<SampleType, LabelPixelType> ClassifierType;

  ClassifierType::Pointer classifier = ClassifierType::New();

  classifier->SetNumberOfClasses(numberOfClasses);
  classifier->SetModel(model);
  classifier->SetInput(sample.GetPointer());
  classifier->Update();

  /* Build the class map */
  std::cout << "Output image creation" << std::endl;

  std::cout << "classifier get output" << std::endl;
  ClassifierType::OutputType* membershipSample =
    classifier->GetOutput();
  std::cout << "Sample iterators" << std::endl;
  ClassifierType::OutputType::ConstIterator m_iter =
    membershipSample->Begin();
  ClassifierType::OutputType::ConstIterator m_last =
    membershipSample->End();

  double error = 0.0;
  pointId = 0;
  while (m_iter != m_last)
    {
    ClassifierType::ClassLabelType label = m_iter.GetClassLabel();

    InputVectorType measure;

    tPSet->GetPointData(pointId, &measure);

    ClassifierType::ClassLabelType expectedLabel;
    if (measure[0] < measure[1]) expectedLabel = 0;
    else expectedLabel = 1;

    double dist = fabs(measure[0] - measure[1]);

    if (label != expectedLabel) error++;

    std::cout << int(label) << "/" << int(expectedLabel) << " --- " << dist <<
    std::endl;

    ++pointId;
    ++m_iter;
    }

  std::cout << "Error = " << error / pointId << std::endl;

  return EXIT_SUCCESS;
}