File: TrainMachineLearningModelFromImagesExample.cxx

package info (click to toggle)
otb 5.8.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,496 kB
  • ctags: 40,282
  • sloc: cpp: 306,573; ansic: 3,575; python: 450; sh: 214; perl: 74; java: 72; makefile: 70
file content (186 lines) | stat: -rw-r--r-- 7,109 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

//  Software Guide : BeginCommandLineArgs
//    INPUTS: {QB_1_ortho.tif}, {VectorData_QB1.shp}
//    OUTPUTS: {clLIBSVMModelQB1.libsvm}
//  Software Guide : EndCommandLineArgs

//  Software Guide : BeginLatex
// This example illustrates the use of the
// \doxygen{otb}{MachineLearningModel} class. This class allows the
// estimation of a classification model (supervised learning) from images. In this example, we will train an SVM
// with 4 classes. We start by including the appropriate header files.
//
//  Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// List sample generator
#include "otbListSampleGenerator.h"

// Extract a ROI of the vectordata
#include "otbVectorDataIntoImageProjectionFilter.h"

// SVM model Estimator
#include "otbSVMMachineLearningModel.h"
// Software Guide : EndCodeSnippet


// Image
#include "otbVectorImage.h"
#include "otbVectorData.h"

// Reader
#include "otbImageFileReader.h"
#include "otbVectorDataFileReader.h"

// Normalize the samples
//#include "otbShiftScaleSampleListFilter.h"


int main(int itkNotUsed(argc), char* argv[])
{
  const char* inputImageFileName = argv[1];
  const char* trainingShpFileName = argv[2];
  const char* outputModelFileName = argv[3];

  typedef unsigned int InputPixelType;
  const unsigned int Dimension = 2;
  typedef otb::VectorImage<InputPixelType,  Dimension> InputImageType;
  typedef otb::VectorData<double, 2>                   VectorDataType;
  typedef otb::ImageFileReader<InputImageType>         InputReaderType;
  typedef otb::VectorDataFileReader<VectorDataType>    VectorDataReaderType;

// Software Guide : BeginLatex
//
// In this framework, we must transform the input samples store in a vector
// data into a \subdoxygen{itk}{Statistics}{ListSample} which is the structure
// compatible with the machine learning classes. On the one hand, we are using feature vectors
// for the characterization of the classes, and on the other hand, the class labels
// are scalar values. We first re-project the input vector data over the input image, using the
// \doxygen{otb}{VectorDataIntoImageProjectionFilter} class. To convert the
// input samples store in a vector data into a
// \subdoxygen{itk}{Statistics}{ListSample}, we use the
// \doxygen{otb}{ListSampleGenerator} class.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  // VectorData projection filter
  typedef otb::VectorDataIntoImageProjectionFilter<VectorDataType, InputImageType>
                                                        VectorDataReprojectionType;

  InputReaderType::Pointer inputReader = InputReaderType::New();
  inputReader->SetFileName(inputImageFileName);

  InputImageType::Pointer image = inputReader->GetOutput();
  image->UpdateOutputInformation();

  // Read the Vectordata
  VectorDataReaderType::Pointer vectorReader = VectorDataReaderType::New();
  vectorReader->SetFileName(trainingShpFileName);
  vectorReader->Update();

  VectorDataType::Pointer vectorData = vectorReader->GetOutput();
  vectorData->Update();

  VectorDataReprojectionType::Pointer vdreproj = VectorDataReprojectionType::New();

  vdreproj->SetInputImage(image);
  vdreproj->SetInput(vectorData);
  vdreproj->SetUseOutputSpacingAndOriginFromImage(false);

  vdreproj->Update();

  typedef otb::ListSampleGenerator<InputImageType, VectorDataType>
                                                           ListSampleGeneratorType;
  ListSampleGeneratorType::Pointer sampleGenerator;
  sampleGenerator = ListSampleGeneratorType::New();

  sampleGenerator->SetInput(image);
  sampleGenerator->SetInputVectorData(vdreproj->GetOutput());
  sampleGenerator->SetClassKey("Class");

  sampleGenerator->Update();
  // Software Guide : EndCodeSnippet


  //std::cout << "Number of classes: " << sampleGenerator->GetNumberOfClasses() << std::endl;

  // typedef ListSampleGeneratorType::ListSampleType ListSampleType;
  // typedef otb::Statistics::ShiftScaleSampleListFilter<ListSampleType, ListSampleType> ShiftScaleFilterType;

  // // Shift scale the samples
  // ShiftScaleFilterType::Pointer trainingShiftScaleFilter = ShiftScaleFilterType::New();
  // trainingShiftScaleFilter->SetInput(concatenateTrainingSamples->GetOutput());
  // trainingShiftScaleFilter->SetShifts(meanMeasurementVector);
  // trainingShiftScaleFilter->SetScales(stddevMeasurementVector);
  // trainingShiftScaleFilter->Update();


// Software Guide : BeginLatex
//
// Now, we need to declare the machine learning model which will be used by the
// classifier. In this example, we train an SVM model. The
// \doxygen{otb}{SVMMachineLearningModel} class inherits from the pure virtual
// class \doxygen{otb}{MachineLearningModel} which is templated over the type of
// values used for the measures and the type of pixels used for the labels. Most
// of the classification and regression algorithms available through this
// interface in OTB is based on the OpenCV library \cite{opencv_library}. Specific methods
// can be used to set classifier parameters. In the case of SVM, we set here the type
// of the kernel. Other parameters are let with their default values.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef otb::SVMMachineLearningModel
                                 <InputImageType::InternalPixelType,
                                  ListSampleGeneratorType::ClassLabelType> SVMType;

  SVMType::Pointer SVMClassifier = SVMType::New();

  SVMClassifier->SetInputListSample(sampleGenerator->GetTrainingListSample());
  SVMClassifier->SetTargetListSample(sampleGenerator->GetTrainingListLabel());

  SVMClassifier->SetKernelType(CvSVM::LINEAR);
  // Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// The machine learning interface is generic and gives access to other classifiers. We now train the
// SVM model using the \code{Train} and save the model to a text file using the
// \code{Save} method.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  SVMClassifier->Train();
  SVMClassifier->Save(outputModelFileName);
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex

// You can now use the \code{Predict} method which takes a
// \subdoxygen{itk}{Statistics}{ListSample} as input and estimates the label of each
// input sample using the model. Finally, the
// \doxygen{otb}{ImageClassificationModel} inherits from the
// \doxygen{itk}{ImageToImageFilter} and allows classifying pixels in the
// input image by predicting their labels using a model.
//
// Software Guide : EndLatex

}