1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
/*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {1000}, {4}, {5}, {121212}
// OUTPUTS: {clSVMModelFromSamples.svm}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example illustrates the use of the \doxygen{otb}{SVMMachineLearningModel} class, which inherits from the
// \doxygen{otb}{MachineLearningModel} class. This class allows the
// estimation of a classification model (supervised learning) from samples. In this example, we will train an SVM model
// with 4 output classes, from 1000 randomly generated training samples, each of them having 7 components.
// We start by including the appropriate header files.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// List sample generator
#include "otbListSampleGenerator.h"
// Random number generator
// SVM model Estimator
#include "otbSVMMachineLearningModel.h"
// Software Guide : EndCodeSnippet
int main(int argc, char* argv[])
{
/*
if (argc != 6)
{
std::cerr << "Usage: " << argv[0] << " nbSamples nbSampleComponents nbClasses inputSeed outputModelFileName" << std::endl;
return EXIT_FAILURE;
}
*/
if (argc != 2)
{
std::cerr << "Usage: " << argv[0] << " outputModelFileName" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
// The input parameters of the sample generator and of the SVM classifier are initialized.
// Software Guide : EndLatex
/*
int nbSamples = atoi(argv[1]);
int nbSampleComponents = atoi(argv[2]);
int nbClasses = atoi(argv[3]);
unsigned int inputSeed = atoi(argv[4]);
*/
// Software Guide : BeginCodeSnippet
int nbSamples = 1000;
int nbSampleComponents = 7;
int nbClasses = 4;
// Software Guide : EndCodeSnippet
// unsigned int inputSeed = 121212;
const char* outputModelFileName = argv[1]; //argv[5];
// Software Guide : BeginLatex
// Two lists are generated into a \subdoxygen{itk}{Statistics}{ListSample} which is the structure
// used to handle both lists of samples and of labels for the machine learning classes derived from
// \doxygen{otb}{MachineLearningModel}. The first list is composed of feature vectors representing
// multi-component samples, and the second one is filled with their corresponding class labels. The
// list of labels is composed of scalar values.
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Input related typedefs
typedef float InputValueType;
typedef itk::VariableLengthVector<InputValueType> InputSampleType;
typedef itk::Statistics::ListSample<InputSampleType> InputListSampleType;
// Target related typedefs
typedef int TargetValueType;
typedef itk::FixedArray<TargetValueType, 1> TargetSampleType;
typedef itk::Statistics::ListSample<TargetSampleType> TargetListSampleType;
InputListSampleType::Pointer InputListSample = InputListSampleType::New();
TargetListSampleType::Pointer TargetListSample = TargetListSampleType::New();
InputListSample->SetMeasurementVectorSize(nbSampleComponents);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
// In this example, the list of multi-component training samples is randomly filled with a random number
// generator based on the \subdoxygen{itk}{Statistics}{MersenneTwisterRandomVariateGenerator} class.
// Each component's value is generated from a normal law centered around the corresponding class label of
// each sample multiplied by 100, with a standard deviation of 10.
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
itk::Statistics::MersenneTwisterRandomVariateGenerator::Pointer randGen;
randGen = itk::Statistics::MersenneTwisterRandomVariateGenerator::GetInstance();
// Filling the two input training lists
for (int i = 0; i < nbSamples; ++i)
{
InputSampleType sample;
TargetValueType label = (i % nbClasses) + 1;
// Multi-component sample randomly filled from a normal law for each component
sample.SetSize(nbSampleComponents);
for (int itComp = 0; itComp < nbSampleComponents; ++itComp)
{
sample[itComp] = randGen->GetNormalVariate(100 * label, 10);
}
InputListSample->PushBack(sample);
TargetListSample->PushBack(label);
}
// Software Guide : EndCodeSnippet
// Displays the corresponding values (not into the Software Guide)
for (int i = 0; i < nbSamples; ++i)
{
std::cout << i + 1 << "-label = " << TargetListSample->GetMeasurementVector(i) << std::endl;
std::cout << "sample = " << InputListSample->GetMeasurementVector(i) << std::endl << std::endl;
}
// Software Guide : BeginLatex
//Once both sample and label lists are generated, the second step consists in
//declaring the machine learning classifier. In our case we use an SVM model
//with the help of the \doxygen{otb}{SVMMachineLearningModel} class which is
//derived from the \doxygen{otb}{MachineLearningModel} class.
//This pure virtual class is based on the machine learning framework of the
//OpenCV library (\cite{opencv_library}) which handles other classifiers than
//the SVM.
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::SVMMachineLearningModel<InputValueType, TargetValueType> SVMType;
SVMType::Pointer SVMClassifier = SVMType::New();
SVMClassifier->SetInputListSample(InputListSample);
SVMClassifier->SetTargetListSample(TargetListSample);
SVMClassifier->SetKernelType(CvSVM::LINEAR);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Once the classifier is parametrized with both input lists and default parameters, except
// for the kernel type in our example of SVM model estimation, the model
// training is computed with the \code{Train} method. Finally, the \code{Save} method
// exports the model to a text file. All the available classifiers based on OpenCV are
// implemented with these interfaces. Like for the SVM model training, the other classifiers
// can be parametrized with specific settings.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
SVMClassifier->Train();
SVMClassifier->Save(outputModelFileName);
// Software Guide : EndCodeSnippet
}
|