1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
/*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {qb_RoadExtract.tif}
// OUTPUTS: {qb_blue.tif}, {qb_shiftscale.tif}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// First, we are going to use \doxygen{otb}{VectorImage} instead of the now
// traditional \doxygen{otb}{Image}. So we include the required header:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We also include some other header which will be useful later. Note that we
// are still using the \doxygen{otb}{Image} in this example for some of the
// output.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbMultiToMonoChannelExtractROI.h"
#include "itkShiftScaleImageFilter.h"
#include "otbPerBandVectorImageFilter.h"
int main(int argc, char * argv[])
{
if (argc != 4)
{
std::cerr << "Usage: "
<< argv[0]
<< " <input_filename> <output_extract> <output_shifted_scaled>"
<< std::endl;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We want to read a multispectral image so we declare the image type and the
// reader. As we have done in the previous example we get the filename from
// the command line.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned short int PixelType;
typedef otb::VectorImage<PixelType, 2> VectorImageType;
typedef otb::ImageFileReader<VectorImageType> ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Sometime, you need to process only one spectral band of the image. To get
// only one of the spectral band we use the
// \doxygen{otb}{MultiToMonoChannelExtractROI}. The declaration is as usual:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::MultiToMonoChannelExtractROI<PixelType, PixelType>
ExtractChannelType;
ExtractChannelType::Pointer extractChannel = ExtractChannelType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We need to pass the parameters to the filter for the extraction. This
// filter also allow extracting only a spatial subset of the image. However,
// we will extract the whole channel in this case.
//
// To do that, we need to pass the desired region using the
// \code{SetExtractionRegion()} (method such as \code{SetStartX},
// \code{SetSizeX} are also available). We get the region from the reader with
// the \code{GetLargestPossibleRegion()} method. Before doing that we need to
// read the metadata from the file: this is done by calling the
// \code{UpdateOutputInformation()} on the reader's output. The difference with the
// \code{Update()} is that the pixel array is not allocated (yet !) and reduce
// the memory usage.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
reader->UpdateOutputInformation();
extractChannel->SetExtractionRegion(
reader->GetOutput()->GetLargestPossibleRegion());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We chose the channel number to extract (starting from 1) and we plug the
// pipeline.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
extractChannel->SetChannel(3);
extractChannel->SetInput(reader->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// To output this image, we need a writer. As the output of the
// \doxygen{otb}{MultiToMonoChannelExtractROI} is a \doxygen{otb}{Image}, we
// need to template the writer with this type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::Image<PixelType, 2> ImageType;
typedef otb::ImageFileWriter<ImageType> WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(argv[2]);
writer->SetInput(extractChannel->GetOutput());
writer->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// After this, we have a one band image that we can process with most OTB
// filters.
//
// In some situation, you may want to apply the same process to all bands of
// the image. You don't have to extract each band and process them separately.
// There is several situations:
//
// \begin{itemize}
// \item the filter (or the combination of filters) you want to use are doing
// operations that are well defined for \doxygen{itk}{VariableLengthVector}
// (which is the pixel type), then you don't have to do anything special.
// \item if this is not working, you can look for the equivalent filter
// specially designed for vector images.
// \item some of the filter you need to use applies operations undefined for
// \doxygen{itk}{VariableLengthVector}, then you can use the
// \doxygen{otb}{PerBandVectorImageFilter} specially designed for this
// purpose.
// \end{itemize}
//
// Let's see how this filter is working. We chose to apply the
// \doxygen{itk}{ShiftScaleImageFilter} to each of the spectral band. We start
// by declaring the filter on a normal \doxygen{otb}{Image}. Note that we
// don't need to specify any input for this filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ShiftScaleImageFilter<ImageType, ImageType> ShiftScaleType;
ShiftScaleType::Pointer shiftScale = ShiftScaleType::New();
shiftScale->SetScale(0.5);
shiftScale->SetShift(10);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We declare the \doxygen{otb}{PerBandVectorImageFilter} which has three
// template: the input image type, the output image type and the filter type
// to apply to each band.
//
// The filter is selected using the \code{SetFilter()} method and the input
// by the usual \code{SetInput()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::PerBandVectorImageFilter
<VectorImageType, VectorImageType, ShiftScaleType> VectorFilterType;
VectorFilterType::Pointer vectorFilter = VectorFilterType::New();
vectorFilter->SetFilter(shiftScale);
vectorFilter->SetInput(reader->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now, we just have to save the image using a writer templated over an
// \doxygen{otb}{VectorImage}:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::ImageFileWriter<VectorImageType> VectorWriterType;
VectorWriterType::Pointer writerVector = VectorWriterType::New();
writerVector->SetFileName(argv[3]);
writerVector->SetInput(vectorFilter->GetOutput());
writerVector->Update();
return EXIT_SUCCESS;
}
// Software Guide : EndCodeSnippet
|