File: otbGridResampleImageFilter.txx

package info (click to toggle)
otb 5.8.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,496 kB
  • ctags: 40,282
  • sloc: cpp: 306,573; ansic: 3,575; python: 450; sh: 214; perl: 74; java: 72; makefile: 70
file content (437 lines) | stat: -rw-r--r-- 14,117 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbGridResampleImageFilter_txx
#define otbGridResampleImageFilter_txx

#include "otbGridResampleImageFilter.h"

#include "otbStreamingTraits.h"

#include "itkNumericTraits.h"
#include "itkProgressReporter.h"
#include "itkImageScanlineIterator.h"
#include "itkContinuousIndex.h"

namespace otb
{
  
template <typename TInputImage, typename TOutputImage,
          typename TInterpolatorPrecision>
GridResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecision>
::GridResampleImageFilter()
  : m_OutputStartIndex(),
    m_OutputSize(),
    m_OutputOrigin(),
    m_OutputSpacing(),
    m_EdgePaddingValue(),
    m_CheckOutputBounds(true),
    m_Interpolator(),
    m_ReachableOutputRegion()
{
  // Set linear interpolator as default
  m_Interpolator = dynamic_cast<InterpolatorType *>(DefaultInterpolatorType::New().GetPointer());

  // Initialize EdgePaddingValue
  m_EdgePaddingValue = itk::NumericTraits<OutputPixelType>::ZeroValue(m_EdgePaddingValue);

  // Initialize origin and spacing
  m_OutputOrigin.Fill(0.);
  m_OutputSpacing.Fill(1.);
  m_OutputStartIndex.Fill(0);
  m_OutputSize.Fill(0);
}


/** Import output parameters from a given image */
template <typename TInputImage, typename TOutputImage,
          typename TInterpolatorPrecision>
void
GridResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecision>
::SetOutputParametersFromImage(const ImageBaseType * image)
{
  this->SetOutputOrigin ( image->GetOrigin() );
  this->SetOutputSpacing ( image->GetSpacing() );
  this->SetOutputStartIndex ( image->GetLargestPossibleRegion().GetIndex() );
  this->SetOutputSize ( image->GetLargestPossibleRegion().GetSize() );
}

template <typename TInputImage, typename TOutputImage,
          typename TInterpolatorPrecision>
void
GridResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecision>
::GenerateOutputInformation()
{
   // call the superclass' implementation of this method
  Superclass::GenerateOutputInformation();

  // get pointers to the input and output
  OutputImageType *outputPtr = this->GetOutput();
  if ( !outputPtr )
    {
    return;
    }

  // Fill output image data
  typename TOutputImage::RegionType outputLargestPossibleRegion;
  outputLargestPossibleRegion.SetSize(m_OutputSize);
  outputLargestPossibleRegion.SetIndex(m_OutputStartIndex);
  
  outputPtr->SetLargestPossibleRegion(outputLargestPossibleRegion);
  outputPtr->SetSpacing(m_OutputSpacing);
  outputPtr->SetOrigin(m_OutputOrigin);

  // TODO: Report no data value here
}

template <typename TInputImage, typename TOutputImage,
          typename TInterpolatorPrecision>
void
GridResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecision>
::GenerateInputRequestedRegion()
{
  // call the superclass's implementation of this method
  Superclass::GenerateInputRequestedRegion();

  // Check for input
  if ( !this->GetInput() )
    {
    return;
    }

  // get pointers to the input and output
  typename TInputImage::Pointer inputPtr  =
    const_cast< TInputImage * >( this->GetInput() );

  // check for output
  OutputImageType *outputPtr = this->GetOutput();
  if ( !outputPtr )
    {
    return;
    }

  typename TOutputImage::RegionType outputRequestedRegion = outputPtr->GetRequestedRegion();

  IndexType outULIndex,outLRIndex;

  typedef itk::ContinuousIndex<double,TInputImage::ImageDimension> ContinuousIndexType;
  
  ContinuousIndexType inULCIndex,inLRCIndex;
 
  // Get output image requested region corners as Index
  outULIndex = outputRequestedRegion.GetIndex();
  outLRIndex = outULIndex+outputRequestedRegion.GetSize();
  outLRIndex[0]-=1;
  outLRIndex[1]-=1;
  
  // Transform to physiscal points
  PointType outULPoint,outLRPoint;
  outputPtr->TransformIndexToPhysicalPoint(outULIndex,outULPoint);
  outputPtr->TransformIndexToPhysicalPoint(outLRIndex,outLRPoint);

  // Transform to input image Index
  inputPtr->TransformPhysicalPointToContinuousIndex(outULPoint,inULCIndex);
  inputPtr->TransformPhysicalPointToContinuousIndex(outLRPoint,inLRCIndex);

  SizeType inSize;
  IndexType inULIndex,inLRIndex;
   
  // Reorder index properly and compute size
  for(unsigned int dim = 0; dim < ImageDimension;++dim)
    {
    if(inULCIndex[dim] > inLRCIndex[dim])
      {
      // swap
      typename ContinuousIndexType::ValueType tmp(inULCIndex[dim]);
      inULCIndex[dim]=inLRCIndex[dim];
      inLRCIndex[dim]=tmp;
      }

    // Ensure correct rounding of coordinates
   
    inULIndex[dim] = vcl_floor(inULCIndex[dim]);
    inLRIndex[dim] = vcl_ceil(inLRCIndex[dim]);
    
    inSize[dim] = static_cast<typename SizeType::SizeValueType>(inLRIndex[dim]-inULIndex[dim])+1;
    }

  // Build the input requested region
  typename TInputImage::RegionType inputRequestedRegion;
  inputRequestedRegion.SetIndex(inULIndex);
  inputRequestedRegion.SetSize(inSize);

  // Compute the padding due to the interpolator
  unsigned int interpolatorRadius =
      StreamingTraits<typename Superclass::InputImageType>::CalculateNeededRadiusForInterpolator(this->GetInterpolator());
  inputRequestedRegion.PadByRadius(interpolatorRadius);

  // crop the input requested region at the input's largest possible region
  if (inputRequestedRegion.Crop(inputPtr->GetLargestPossibleRegion()))
    {
    inputPtr->SetRequestedRegion(inputRequestedRegion);
    }
  else
    {
    
    // store what we tried to request (prior to trying to crop)
    inputPtr->SetRequestedRegion(inputRequestedRegion);

   // build an exception
   itk::InvalidRequestedRegionError e(__FILE__, __LINE__);
   e.SetLocation(ITK_LOCATION);
   e.SetDescription("Requested region is (at least partially) outside the largest possible region.");
   e.SetDataObject(inputPtr);
   throw e;
    }

}


template <typename TInputImage, typename TOutputImage,
          typename TInterpolatorPrecision>
void
GridResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecision>
::BeforeThreadedGenerateData()
{
  if ( !m_Interpolator )
    {
    itkExceptionMacro(<< "Interpolator not set");
    }

  // Connect input image to interpolator
  m_Interpolator->SetInputImage( this->GetInput() );


  unsigned int nComponents
    = itk::DefaultConvertPixelTraits<OutputPixelType>::GetNumberOfComponents(
      m_EdgePaddingValue );

  if (nComponents == 0)
    {

    // Build a default value of the correct number of components
    OutputPixelComponentType zeroComponent
      = itk::NumericTraits<OutputPixelComponentType>::ZeroValue( zeroComponent );
    
    nComponents = this->GetInput()->GetNumberOfComponentsPerPixel();
    
    itk::NumericTraits<OutputPixelType>::SetLength(m_EdgePaddingValue, nComponents );
    for (unsigned int n=0; n<nComponents; n++)
      {
      OutputPixelConvertType::SetNthComponent( n, m_EdgePaddingValue,
                                               zeroComponent );
      }
    }

  // Compute ReachableOutputRegion
  // InputImage buffered region corresponds to a region of the output
  // image. Computing it beforehand allows saving IsInsideBuffer
  // calls in the interpolation loop
  
  // Compute the padding due to the interpolator

  
  IndexType inUL = this->GetInput()->GetBufferedRegion().GetIndex();
  IndexType inLR = this->GetInput()->GetBufferedRegion().GetIndex() + this->GetInput()->GetBufferedRegion().GetSize();
  inLR[0]-=1;
  inLR[1]-=1;

  // We should take interpolation radius into account here, but this
  // does not match the IsInsideBuffer method
  // unsigned int interpolatorRadius =
  // StreamingTraits<typename Superclass::InputImageType>::CalculateNeededRadiusForInterpolator(this->GetInterpolator());
  // inUL[0]+=interpolatorRadius;
  // inUL[1]+=interpolatorRadius;
  // inLR[0]-=interpolatorRadius;
  // inLR[1]-=interpolatorRadius;
  
  PointType inULp, inLRp;
  this->GetInput()->TransformIndexToPhysicalPoint(inUL,inULp);
  this->GetInput()->TransformIndexToPhysicalPoint(inLR,inLRp);

  inULp-=0.5*this->GetInput()->GetSpacing();
  inLRp+=0.5*this->GetInput()->GetSpacing();

  ContinuousInputIndexType outUL;
  ContinuousInputIndexType outLR;
  this->GetOutput()->TransformPhysicalPointToContinuousIndex(inULp,outUL);
  this->GetOutput()->TransformPhysicalPointToContinuousIndex(inLRp,outLR);

  IndexType outputIndex;
  // This needs to take into account negative spacing
  outputIndex[0] = vcl_ceil(std::min(outUL[0],outLR[0]));
  outputIndex[1] = vcl_ceil(std::min(outUL[1],outLR[1]));

  SizeType outputSize;
  outputSize[0] = vcl_floor(std::max(outUL[0],outLR[0])) - outputIndex[0] + 1;
  outputSize[1] = vcl_floor(std::max(outUL[1],outLR[1])) - outputIndex[1] + 1;

  m_ReachableOutputRegion.SetIndex(outputIndex);
  m_ReachableOutputRegion.SetSize(outputSize);
}

template <typename TInputImage, typename TOutputImage,
          typename TInterpolatorPrecision>
void
GridResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecision>
::ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, itk::ThreadIdType threadId)
{
  // Get the output pointers
  OutputImageType *outputPtr = this->GetOutput();

  // Get this input pointers
  const InputImageType *inputPtr = this->GetInput();

  // Min/max values of the output pixel type AND these values
  // represented as the output type of the interpolator
  const OutputPixelComponentType minValue =  itk::NumericTraits< OutputPixelComponentType >::NonpositiveMin();
  const OutputPixelComponentType maxValue =  itk::NumericTraits< OutputPixelComponentType >::max();

  const InterpolatorComponentType minOutputValue = static_cast< InterpolatorComponentType >( minValue );
  const InterpolatorComponentType maxOutputValue = static_cast< InterpolatorComponentType >( maxValue );

  // Iterator on the output region for current thread
  OutputImageRegionType regionToCompute = outputRegionForThread;
  bool cropSucceed = regionToCompute.Crop(m_ReachableOutputRegion);

  // Fill thread buffer
  itk::ImageScanlineIterator<OutputImageType> outItFull(outputPtr,outputRegionForThread);
  outItFull.GoToBegin();
  while(!outItFull.IsAtEnd())
    {
    while(!outItFull.IsAtEndOfLine())
      {
      outItFull.Set(m_EdgePaddingValue);
      ++outItFull;
      }
    outItFull.NextLine();
    }

  if(!cropSucceed)
    return;

  itk::ImageScanlineIterator<OutputImageType> outIt(outputPtr, regionToCompute);

  // Support for progress methods/callbacks
  itk::ProgressReporter progress( this,
                                  threadId,
                                  regionToCompute.GetSize()[1]);

  // Temporary variables for loop
  PointType outPoint;
  ContinuousInputIndexType inCIndex;
  InterpolatorOutputType interpolatorValue; //(this->GetOutput()->GetNumberOfComponentsPerPixel());
  OutputPixelType outputValue; //(this->GetOutput()->GetNumberOfComponentsPerPixel());

  // TODO: assert outputPtr->GetSpacing() != 0 here
  assert(outputPtr->GetSpacing()[0]!=0&&"Null spacing will cause division by zero.");
  const double delta = outputPtr->GetSpacing()[0]/inputPtr->GetSpacing()[0];
  
  // Iterate through the output region
  outIt.GoToBegin();
  
  while(!outIt.IsAtEnd())
    {
    // Map output index to input continuous index
    outputPtr->TransformIndexToPhysicalPoint(outIt.GetIndex(),outPoint);
    inputPtr->TransformPhysicalPointToContinuousIndex(outPoint,inCIndex);

    while(!outIt.IsAtEndOfLine())
      {
      // Interpolate
      interpolatorValue = m_Interpolator->EvaluateAtContinuousIndex(inCIndex);
      
      // Cast and check bounds
      this->CastPixelWithBoundsChecking(interpolatorValue,minOutputValue,maxOutputValue,outputValue);
  
      // Set output value
      outIt.Set(outputValue);

      // move one pixel forward
      ++outIt;

      // Update input position
      inCIndex[0]+=delta;
      }
    
      // Report progress
      progress.CompletedPixel();

      // Move to next line
      outIt.NextLine();
    }

}

template <typename TInputImage, typename TOutputImage,
          typename TInterpolatorPrecision>
void
GridResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecision>
::AfterThreadedGenerateData()
{
  // Disconnect input image from the interpolator
  m_Interpolator->SetInputImage(ITK_NULLPTR);
}


template <typename TInputImage, typename TOutputImage,
          typename TInterpolatorPrecision>
itk::ModifiedTimeType
GridResampleImageFilter< TInputImage, TOutputImage, TInterpolatorPrecision >
::GetMTime(void) const
{
  itk::ModifiedTimeType latestTime = itk::Object::GetMTime();

  if ( m_Interpolator )
    {
    if ( latestTime < m_Interpolator->GetMTime() )
      {
      latestTime = m_Interpolator->GetMTime();
      }
    }

  return latestTime;
}


template <typename TInputImage, typename TOutputImage,
          typename TInterpolatorPrecision>
void
GridResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecision>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "EdgePaddingValue: "
     << static_cast< typename itk::NumericTraits< OutputPixelType >::PrintType >
  ( m_EdgePaddingValue )
     << std::endl;
  os << indent << "OutputStartIndex: " << m_OutputStartIndex << std::endl;
  os << indent << "OutputSize: " << m_OutputSize << std::endl;
  os << indent << "OutputOrigin: " << m_OutputOrigin << std::endl;
  os << indent << "OutputSpacing: " << m_OutputSpacing << std::endl;
  os << indent << "Interpolator: " << m_Interpolator.GetPointer() << std::endl;
  os << indent << "CheckOutputBounds: " << ( m_CheckOutputBounds ? "On" : "Off" )
     << std::endl;
}



} // namespace otb


#endif