File: otbKMeansImageClassificationFilter.h

package info (click to toggle)
otb 5.8.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,496 kB
  • ctags: 40,282
  • sloc: cpp: 306,573; ansic: 3,575; python: 450; sh: 214; perl: 74; java: 72; makefile: 70
file content (131 lines) | stat: -rw-r--r-- 4,896 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbKMeansImageClassificationFilter_h
#define otbKMeansImageClassificationFilter_h

#include "itkInPlaceImageFilter.h"
#include "itkListSample.h"
#include "itkEuclideanDistanceMetric.h"

namespace otb
{
/** \class KMeansImageClassificationFilter
 *  \brief This filter performs the classification of a VectorImage using a KMeans estimation result.
 *
 *  This filter is streamed and threaded, allowing to classify huge images. Because the
 *  internal sample type has to be an itk::FixedArray, one must specify at compilation time
 *  the maximum sample dimension. It is up to the user to specify a MaxSampleDimension sufficiently
 *  high to integrate all its features. This filter internally use one SVMClassifier per thread.
 *
 * \sa SVMClassifier
 * \ingroup Streamed
 * \ingroup Threaded
 *
 * \ingroup OTBLearningBase
 */
template <class TInputImage, class TOutputImage, unsigned int VMaxSampleDimension = 10, class TMaskImage = TOutputImage>
class ITK_EXPORT KMeansImageClassificationFilter
  : public itk::InPlaceImageFilter<TInputImage, TOutputImage>
{
public:
  /** Standard typedefs */
  typedef KMeansImageClassificationFilter                    Self;
  typedef itk::InPlaceImageFilter<TInputImage, TOutputImage> Superclass;
  typedef itk::SmartPointer<Self>                            Pointer;
  typedef itk::SmartPointer<const Self>                      ConstPointer;

  /** Type macro */
  itkNewMacro(Self);

  /** Creation through object factory macro */
  itkTypeMacro(KMeansImageClassificationFilter, InPlaceImageFilter);

  /** The max dimension of the sample to classify.
   *  This filter internally uses itk::FixedArray as input for the classifier,
   *  so the max sample size has to be fixed at compilation time.
   */
  itkStaticConstMacro(MaxSampleDimension, unsigned int, VMaxSampleDimension);

  typedef TInputImage                                InputImageType;
  typedef typename InputImageType::ConstPointer      InputImageConstPointerType;
  typedef typename InputImageType::InternalPixelType ValueType;

  typedef TMaskImage                           MaskImageType;
  typedef typename MaskImageType::ConstPointer MaskImageConstPointerType;
  typedef typename MaskImageType::Pointer      MaskImagePointerType;

  typedef TOutputImage                         OutputImageType;
  typedef typename OutputImageType::Pointer    OutputImagePointerType;
  typedef typename OutputImageType::RegionType OutputImageRegionType;
  typedef typename OutputImageType::PixelType  LabelType;

  typedef itk::FixedArray<ValueType, MaxSampleDimension> SampleType;
  typedef itk::Array<double>                             KMeansParametersType;
  typedef std::map<LabelType, SampleType>                CentroidsMapType;
  typedef itk::Statistics::EuclideanDistanceMetric<SampleType> DistanceType;

  /** Set/Get the centroids */
  itkSetMacro(Centroids, KMeansParametersType);
  itkGetConstReferenceMacro(Centroids, KMeansParametersType);

  /** Set/Get the default label */
  itkSetMacro(DefaultLabel, LabelType);
  itkGetMacro(DefaultLabel, LabelType);

  /**
   * If set, only pixels within the mask will be classified.
   * \param mask The input mask.
   */
  void SetInputMask(const MaskImageType * mask);

  /**
   * Get the input mask.
   * \return The mask.
   */
  const MaskImageType * GetInputMask(void);

protected:
  /** Constructor */
  KMeansImageClassificationFilter();
  /** Destructor */
  ~KMeansImageClassificationFilter() ITK_OVERRIDE {}

  /** Threaded generate data */
  void ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, itk::ThreadIdType threadId) ITK_OVERRIDE;
  /** Before threaded generate data */
  void BeforeThreadedGenerateData() ITK_OVERRIDE;
  /**PrintSelf method */
  void PrintSelf(std::ostream& os, itk::Indent indent) const ITK_OVERRIDE;

private:
  KMeansImageClassificationFilter(const Self &); //purposely not implemented
  void operator =(const Self&); //purposely not implemented

  /** Centroids used for classification */
  KMeansParametersType m_Centroids;
  /** Default label for invalid pixels (when using a mask) */
  LabelType m_DefaultLabel;
  /** Centroids - labels map */
  CentroidsMapType m_CentroidsMap;
};
} // End namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbKMeansImageClassificationFilter.txx"
#endif

#endif