File: otbSVMImageClassificationWithRuleFilter.txx

package info (click to toggle)
otb 5.8.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,496 kB
  • ctags: 40,282
  • sloc: cpp: 306,573; ansic: 3,575; python: 450; sh: 214; perl: 74; java: 72; makefile: 70
file content (148 lines) | stat: -rw-r--r-- 4,916 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.

  Copyright (c) Institut Telecom; Telecom bretagne. All rights reserved.
  See IMTCopyright.txt for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef otbSVMImageClassificationWithRuleFilter_txx
#define otbSVMImageClassificationWithRuleFilter_txx
#include "otbSVMImageClassificationWithRuleFilter.h"

#include "itkNumericTraits.h"

namespace otb {

template <class TInputImage, class TOutputImage, class TMaskImage>
SVMImageClassificationWithRuleFilter<TInputImage, TOutputImage, TMaskImage>
::SVMImageClassificationWithRuleFilter()
{
  m_OutputRule = OutputRuleImageType::New();
}

template <class TInputImage, class TOutputImage, class TMaskImage>
void
SVMImageClassificationWithRuleFilter<TInputImage, TOutputImage, TMaskImage>
::GenerateOutputInformation()
{
  Superclass::GenerateOutputInformation();

  if (this->GetModel() == ITK_NULLPTR)
    {
    itkGenericExceptionMacro(<< "No model for classification");
    }

  // add output information on the rule image
  this->GetOutputRule()->SetNumberOfComponentsPerPixel(
    this->GetModel()->GetNumberOfClasses() * (this->GetModel()->GetNumberOfClasses() - 1) / 2);

  this->GetOutputRule()->CopyInformation(this->GetInput());
  this->GetOutputRule()->SetRegions(this->GetInput()->GetLargestPossibleRegion());
}

template <class TInputImage, class TOutputImage, class TMaskImage>
void
SVMImageClassificationWithRuleFilter<TInputImage, TOutputImage, TMaskImage>
::AllocateOutputs()
{
  Superclass::AllocateOutputs();

  if (this->GetModel() == ITK_NULLPTR)
    {
    itkGenericExceptionMacro(<< "No model for classification");
    }

  // add allocation for the rule image
  OutputRuleImageType * output = this->GetOutputRule();
  output->SetNumberOfComponentsPerPixel(
    this->GetModel()->GetNumberOfClasses() * (this->GetModel()->GetNumberOfClasses() - 1) / 2);
  output->Allocate();
}

template <class TInputImage, class TOutputImage, class TMaskImage>
void
SVMImageClassificationWithRuleFilter<TInputImage, TOutputImage, TMaskImage>
::ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, itk::ThreadIdType threadId)
{
  // Get the input pointers
  InputImageConstPointerType inputPtr      = this->GetInput();
  MaskImageConstPointerType  inputMaskPtr  = this->GetInputMask();
  OutputImagePointerType     outputPtr     = this->GetOutput();
  OutputRuleImagePointerType outputRulePtr = this->GetOutputRule();

  // Progress reporting
  itk::ProgressReporter progress(this, threadId, outputRegionForThread.GetNumberOfPixels());

  // Define iterators
  typedef itk::ImageRegionConstIterator<InputImageType> InputIteratorType;
  typedef itk::ImageRegionConstIterator<MaskImageType>  MaskIteratorType;
  typedef itk::ImageRegionIterator<OutputImageType>     OutputIteratorType;
  typedef itk::ImageRegionIterator<OutputRuleImageType> OutputRuleIteratorType;

  InputIteratorType inIt(inputPtr, outputRegionForThread);
  OutputIteratorType outIt(outputPtr, outputRegionForThread);
  OutputRuleIteratorType outRuleIt(outputRulePtr, outputRegionForThread);

  // Eventually iterate on masks
  MaskIteratorType maskIt;
  if (inputMaskPtr)
    {
    maskIt = MaskIteratorType(inputMaskPtr, outputRegionForThread);
    maskIt.GoToBegin();
    }

  bool validPoint = true;
  typename ModelType::DistancesVectorType defaultDistancesVector
    (outputRulePtr->GetNumberOfComponentsPerPixel());
  defaultDistancesVector.Fill(itk::NumericTraits<RuleValueType>::ZeroValue());

  // Walk the part of the images
  for (inIt.GoToBegin(), outIt.GoToBegin(), outRuleIt.GoToBegin();
       !inIt.IsAtEnd() && !outIt.IsAtEnd() && !outRuleIt.IsAtEnd();
       ++inIt, ++outIt, ++outRuleIt)
    {
    // Check pixel validity
    if (inputMaskPtr)
      {
      validPoint = maskIt.Get() > 0;
      ++maskIt;
      }
    // If point is valid
    if (validPoint)
      {
      // Classifify
      MeasurementType measure;
      for (unsigned int i = 0; i < inIt.Get().Size(); ++i)
        {
        measure.push_back(inIt.Get()[i]);
        }
      outIt.Set(this->GetModel()->EvaluateLabel(measure));
      // And get rules
      outRuleIt.Set(this->GetModel()->EvaluateHyperplanesDistances(measure));
      }
    else
      {
      // else, set default value
      outIt.Set(this->GetDefaultLabel());
      outRuleIt.Set(defaultDistancesVector);
      }
    progress.CompletedPixel();
    }
}

} // end of namespace otb

#endif