1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
Copyright (c) Institut Telecom; Telecom bretagne. All rights reserved.
See IMTCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otbSVMImageClassificationWithRuleFilter_txx
#define otbSVMImageClassificationWithRuleFilter_txx
#include "otbSVMImageClassificationWithRuleFilter.h"
#include "itkNumericTraits.h"
namespace otb {
template <class TInputImage, class TOutputImage, class TMaskImage>
SVMImageClassificationWithRuleFilter<TInputImage, TOutputImage, TMaskImage>
::SVMImageClassificationWithRuleFilter()
{
m_OutputRule = OutputRuleImageType::New();
}
template <class TInputImage, class TOutputImage, class TMaskImage>
void
SVMImageClassificationWithRuleFilter<TInputImage, TOutputImage, TMaskImage>
::GenerateOutputInformation()
{
Superclass::GenerateOutputInformation();
if (this->GetModel() == ITK_NULLPTR)
{
itkGenericExceptionMacro(<< "No model for classification");
}
// add output information on the rule image
this->GetOutputRule()->SetNumberOfComponentsPerPixel(
this->GetModel()->GetNumberOfClasses() * (this->GetModel()->GetNumberOfClasses() - 1) / 2);
this->GetOutputRule()->CopyInformation(this->GetInput());
this->GetOutputRule()->SetRegions(this->GetInput()->GetLargestPossibleRegion());
}
template <class TInputImage, class TOutputImage, class TMaskImage>
void
SVMImageClassificationWithRuleFilter<TInputImage, TOutputImage, TMaskImage>
::AllocateOutputs()
{
Superclass::AllocateOutputs();
if (this->GetModel() == ITK_NULLPTR)
{
itkGenericExceptionMacro(<< "No model for classification");
}
// add allocation for the rule image
OutputRuleImageType * output = this->GetOutputRule();
output->SetNumberOfComponentsPerPixel(
this->GetModel()->GetNumberOfClasses() * (this->GetModel()->GetNumberOfClasses() - 1) / 2);
output->Allocate();
}
template <class TInputImage, class TOutputImage, class TMaskImage>
void
SVMImageClassificationWithRuleFilter<TInputImage, TOutputImage, TMaskImage>
::ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, itk::ThreadIdType threadId)
{
// Get the input pointers
InputImageConstPointerType inputPtr = this->GetInput();
MaskImageConstPointerType inputMaskPtr = this->GetInputMask();
OutputImagePointerType outputPtr = this->GetOutput();
OutputRuleImagePointerType outputRulePtr = this->GetOutputRule();
// Progress reporting
itk::ProgressReporter progress(this, threadId, outputRegionForThread.GetNumberOfPixels());
// Define iterators
typedef itk::ImageRegionConstIterator<InputImageType> InputIteratorType;
typedef itk::ImageRegionConstIterator<MaskImageType> MaskIteratorType;
typedef itk::ImageRegionIterator<OutputImageType> OutputIteratorType;
typedef itk::ImageRegionIterator<OutputRuleImageType> OutputRuleIteratorType;
InputIteratorType inIt(inputPtr, outputRegionForThread);
OutputIteratorType outIt(outputPtr, outputRegionForThread);
OutputRuleIteratorType outRuleIt(outputRulePtr, outputRegionForThread);
// Eventually iterate on masks
MaskIteratorType maskIt;
if (inputMaskPtr)
{
maskIt = MaskIteratorType(inputMaskPtr, outputRegionForThread);
maskIt.GoToBegin();
}
bool validPoint = true;
typename ModelType::DistancesVectorType defaultDistancesVector
(outputRulePtr->GetNumberOfComponentsPerPixel());
defaultDistancesVector.Fill(itk::NumericTraits<RuleValueType>::ZeroValue());
// Walk the part of the images
for (inIt.GoToBegin(), outIt.GoToBegin(), outRuleIt.GoToBegin();
!inIt.IsAtEnd() && !outIt.IsAtEnd() && !outRuleIt.IsAtEnd();
++inIt, ++outIt, ++outRuleIt)
{
// Check pixel validity
if (inputMaskPtr)
{
validPoint = maskIt.Get() > 0;
++maskIt;
}
// If point is valid
if (validPoint)
{
// Classifify
MeasurementType measure;
for (unsigned int i = 0; i < inIt.Get().Size(); ++i)
{
measure.push_back(inIt.Get()[i]);
}
outIt.Set(this->GetModel()->EvaluateLabel(measure));
// And get rules
outRuleIt.Set(this->GetModel()->EvaluateHyperplanesDistances(measure));
}
else
{
// else, set default value
outIt.Set(this->GetDefaultLabel());
outRuleIt.Set(defaultDistancesVector);
}
progress.CompletedPixel();
}
}
} // end of namespace otb
#endif
|