File: otbImageClassificationFilter.h

package info (click to toggle)
otb 5.8.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,496 kB
  • ctags: 40,282
  • sloc: cpp: 306,573; ansic: 3,575; python: 450; sh: 214; perl: 74; java: 72; makefile: 70
file content (141 lines) | stat: -rw-r--r-- 4,832 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbImageClassificationFilter_h
#define otbImageClassificationFilter_h

#include "itkImageToImageFilter.h"
#include "otbMachineLearningModel.h"
#include "otbImage.h"

namespace otb
{
/** \class ImageClassificationFilter
 *  \brief This filter performs the classification of a VectorImage using a Model.
 *
 *  This filter is streamed and threaded, allowing to classify huge images
 *  while fully using several core.
 *
 * \sa Classifier
 * \ingroup Streamed
 * \ingroup Threaded
 *
 * \ingroup OTBSupervised
 */
template <class TInputImage, class TOutputImage, class TMaskImage = TOutputImage>
class ITK_EXPORT ImageClassificationFilter
  : public itk::ImageToImageFilter<TInputImage, TOutputImage>
{
public:
  /** Standard typedefs */
  typedef ImageClassificationFilter                       Self;
  typedef itk::ImageToImageFilter<TInputImage, TOutputImage> Superclass;
  typedef itk::SmartPointer<Self>                            Pointer;
  typedef itk::SmartPointer<const Self>                      ConstPointer;

  /** Type macro */
  itkNewMacro(Self);

  /** Creation through object factory macro */
  itkTypeMacro(ImageClassificationFilter, ImageToImageFilter);

  typedef TInputImage                                InputImageType;
  typedef typename InputImageType::ConstPointer      InputImageConstPointerType;
  typedef typename InputImageType::InternalPixelType ValueType;

  typedef TMaskImage                           MaskImageType;
  typedef typename MaskImageType::ConstPointer MaskImageConstPointerType;
  typedef typename MaskImageType::Pointer      MaskImagePointerType;

  typedef TOutputImage                         OutputImageType;
  typedef typename OutputImageType::Pointer    OutputImagePointerType;
  typedef typename OutputImageType::RegionType OutputImageRegionType;
  typedef typename OutputImageType::PixelType  LabelType;

  typedef MachineLearningModel<ValueType, LabelType> ModelType;
  typedef typename ModelType::Pointer                ModelPointerType;

  typedef otb::Image<double>                    ConfidenceImageType;
  typedef typename ConfidenceImageType::Pointer ConfidenceImagePointerType;

  /** Set/Get the model */
  itkSetObjectMacro(Model, ModelType);
  itkGetObjectMacro(Model, ModelType);

  /** Set/Get the default label */
  itkSetMacro(DefaultLabel, LabelType);
  itkGetMacro(DefaultLabel, LabelType);

  /** Set/Get the confidence map flag */
  itkSetMacro(UseConfidenceMap, bool);
  itkGetMacro(UseConfidenceMap, bool);

  itkSetMacro(BatchMode, bool);
  itkGetMacro(BatchMode, bool);
  itkBooleanMacro(BatchMode);
  
  /**
   * If set, only pixels within the mask will be classified.
   * All pixels with a value greater than 0 in the mask, will be classified.
   * \param mask The input mask.
   */
  void SetInputMask(const MaskImageType * mask);

  /**
   * Get the input mask.
   * \return The mask.
   */
  const MaskImageType * GetInputMask(void);

  /**
   * Get the output confidence map
   */
  ConfidenceImageType * GetOutputConfidence(void);

protected:
  /** Constructor */
  ImageClassificationFilter();
  /** Destructor */
  ~ImageClassificationFilter() ITK_OVERRIDE {}

  /** Threaded generate data */
  void ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, itk::ThreadIdType threadId) ITK_OVERRIDE;
  void ClassicThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, itk::ThreadIdType threadId);
  void BatchThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, itk::ThreadIdType threadId);
  /** Before threaded generate data */
  void BeforeThreadedGenerateData() ITK_OVERRIDE;
  /**PrintSelf method */
  void PrintSelf(std::ostream& os, itk::Indent indent) const ITK_OVERRIDE;

private:
  ImageClassificationFilter(const Self &); //purposely not implemented
  void operator =(const Self&); //purposely not implemented

  /** The model used for classification */
  ModelPointerType m_Model;
  /** Default label for invalid pixels (when using a mask) */
  LabelType m_DefaultLabel;
  /** Flag to produce the confidence map (if the model supports it) */
  bool m_UseConfidenceMap;
  bool m_BatchMode;
};
} // End namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbImageClassificationFilter.txx"
#endif

#endif