File: otbImageClassificationFilter.cxx

package info (click to toggle)
otb 5.8.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,496 kB
  • ctags: 40,282
  • sloc: cpp: 306,573; ansic: 3,575; python: 450; sh: 214; perl: 74; java: 72; makefile: 70
file content (105 lines) | stat: -rw-r--r-- 3,387 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
/*=========================================================================

 Program:   ORFEO Toolbox
 Language:  C++
 Date:      $Date$
 Version:   $Revision$


 Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
 See OTBCopyright.txt for details.


 This software is distributed WITHOUT ANY WARRANTY; without even
 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 PURPOSE.  See the above copyright notices for more information.

 =========================================================================*/
#include "otbImageClassificationFilter.h"
#include "otbVectorImage.h"
#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbMachineLearningModelFactory.h"

const unsigned int Dimension = 2;
typedef double PixelType;
typedef unsigned short LabeledPixelType;

typedef otb::VectorImage<PixelType, Dimension> ImageType;
typedef otb::Image<LabeledPixelType, Dimension> LabeledImageType;
typedef otb::ImageClassificationFilter<ImageType, LabeledImageType> ClassificationFilterType;
typedef ClassificationFilterType::ModelType ModelType;
typedef ClassificationFilterType::ValueType ValueType;
typedef ClassificationFilterType::LabelType LabelType;
typedef otb::MachineLearningModelFactory<ValueType, LabelType> MachineLearningModelFactoryType;
typedef otb::ImageFileReader<ImageType> ReaderType;
typedef otb::ImageFileWriter<LabeledImageType> WriterType;

int otbImageClassificationFilterNew(int itkNotUsed(argc), char * itkNotUsed(argv) [])
{
  ClassificationFilterType::Pointer filter = ClassificationFilterType::New();
  return EXIT_SUCCESS;
}

int otbImageClassificationFilterLoadModel(int itkNotUsed(argc), char * argv[])
{
  const char * infname = argv[1];
  const char * modelfname = argv[2];

  // Instantiating object
  ClassificationFilterType::Pointer filter = ClassificationFilterType::New();

  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName(infname);

  ModelType::Pointer model;

  model = MachineLearningModelFactoryType::CreateMachineLearningModel(modelfname,
                                                                      MachineLearningModelFactoryType::ReadMode);

  if (model.IsNull())
    {
    std::cerr << "Unable to create a model from " << modelfname << std::endl;
    return EXIT_FAILURE;
    }

  model->Load(modelfname);
  return EXIT_SUCCESS;
}

int otbImageClassificationFilter(int itkNotUsed(argc), char * argv[])
{
  const char * infname = argv[1];
  const char * modelfname = argv[2];
  const char * outfname = argv[3];

  // Instantiating object
  ClassificationFilterType::Pointer filter = ClassificationFilterType::New();

  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName(infname);

  ModelType::Pointer model;

  model = MachineLearningModelFactoryType::CreateMachineLearningModel(modelfname,
                                                                      MachineLearningModelFactoryType::ReadMode);

  if (model.IsNull())
  {
    std::cerr << "Unable to create a model from " << modelfname << std::endl;
    return EXIT_FAILURE;
  }

  model->Load(modelfname);

  filter->SetModel(model);
  filter->SetInput(reader->GetOutput());

  WriterType::Pointer writer = WriterType::New();
  writer->SetInput(filter->GetOutput());
  writer->SetFileName(outfname);
  writer->Update();

  return EXIT_SUCCESS;
}