1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
/*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbPrintableImageFilter.h"
// Software Guide : BeginCommandLineArgs
// INPUTS: {wv2_cannes_8bands.tif}
// OUTPUTS: {MNFOutput.tif}, {InverseMNFOutput.tif}, {MNF-input-pretty.png}, {MNF-output-pretty.png}, {MNF-invoutput-pretty.png}
// 8 1 1
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example illustrates the use of the
// \doxygen{otb}{MNFImageFilter}. This filter computes a Maximum
// Noise Fraction transform \cite{green1988transformation} using an
// efficient method based on the inner product in order to compute the
// covariance matrix.
//
// The Maximum Noise Fraction transform is a sequence of two Principal
// Component Analysis transforms. The first transform is based on an
// estimated covariance matrix of the noise, and intends to whiten the
// input image (noise with unit variance and no correlation between
// bands).
//
// The second Principal Component Analysis is then applied to the
// noise-whitened image, giving the Maximum Noise Fraction transform.
//
// In this implementation, noise is estimated from a local window.
//
// The first step required to use this filter is to include its header file.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "otbMNFImageFilter.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We also need to include the header of the noise filter.
//
// SoftwareGuide : EndLatex
// Software Guide : BeginCodeSnippet
#include "otbLocalActivityVectorImageFilter.h"
// Software Guide : EndCodeSnippet
int main(int itkNotUsed(argc), char* argv[])
{
typedef double PixelType;
const unsigned int Dimension = 2;
const char * inputFileName = argv[1];
const char * outputFilename = argv[2];
const char * outputInverseFilename = argv[3];
const unsigned int numberOfPrincipalComponentsRequired(atoi(argv[7]));
const char * inpretty = argv[4];
const char * outpretty = argv[5];
const char * invoutpretty = argv[6];
unsigned int vradius = atoi(argv[8]);
bool normalization = atoi(argv[9]);
// Software Guide : BeginLatex
//
// We start by defining the types for the images, the reader, and
// the writer. We choose to work with a \doxygen{otb}{VectorImage},
// since we will produce a multi-channel image (the principal
// components) from a multi-channel input image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::VectorImage<PixelType, Dimension> ImageType;
typedef otb::ImageFileReader<ImageType> ReaderType;
typedef otb::ImageFileWriter<ImageType> WriterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We instantiate now the image reader and we set the image file name.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputFileName);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In contrast with standard Principal Component Analysis, MNF
// needs an estimation of the noise correlation matrix
// in the dataset prior to transformation.
//
// A classical approach is to use spatial gradient images
// and infer the noise correlation matrix from it.
// The method of noise estimation can be customized
// by templating the \doxygen{otb}{MNFImageFilter}
// with the desired noise estimation method.
//
// In this implementation, noise is estimated from a local window.
// We define the type of the noise filter.
//
// Software Guide : EndLatex
// SoftwareGuide : BeginCodeSnippet
typedef otb::LocalActivityVectorImageFilter<ImageType,ImageType> NoiseFilterType;
// SoftwareGuide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We define the type for the filter. It is templated over the input
// and the output image types and also the transformation direction. The
// internal structure of this filter is a filter-to-filter like structure.
// We can now the instantiate the filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::MNFImageFilter<ImageType, ImageType,
NoiseFilterType,
otb::Transform::FORWARD> MNFFilterType;
MNFFilterType::Pointer MNFfilter = MNFFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We then set the number of principal
// components required as output. We can choose to get less PCs than
// the number of input bands.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
MNFfilter->SetNumberOfPrincipalComponentsRequired(
numberOfPrincipalComponentsRequired);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We set the radius of the sliding window for noise estimation.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
NoiseFilterType::RadiusType radius = {{ vradius, vradius }};
MNFfilter->GetNoiseImageFilter()->SetRadius(radius);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Last, we can activate normalisation.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
MNFfilter->SetUseNormalization( normalization );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now instantiate the writer and set the file name for the
// output image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(outputFilename);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We finally plug the pipeline and trigger the MNF computation with
// the method \code{Update()} of the writer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
MNFfilter->SetInput(reader->GetOutput());
writer->SetInput(MNFfilter->GetOutput());
writer->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \doxygen{otb}{MNFImageFilter} allows also to compute inverse
// transformation from MNF coefficients. In reverse mode, the
// covariance matrix or the transformation matrix
// (which may not be square) has to be given.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::MNFImageFilter< ImageType, ImageType,
NoiseFilterType,
otb::Transform::INVERSE > InvMNFFilterType;
InvMNFFilterType::Pointer invFilter = InvMNFFilterType::New();
invFilter->SetMeanValues( MNFfilter->GetMeanValues() );
if ( normalization )
invFilter->SetStdDevValues( MNFfilter->GetStdDevValues() );
invFilter->SetTransformationMatrix( MNFfilter->GetTransformationMatrix() );
invFilter->SetInput(MNFfilter->GetOutput());
WriterType::Pointer invWriter = WriterType::New();
invWriter->SetFileName(outputInverseFilename );
invWriter->SetInput(invFilter->GetOutput() );
invWriter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
// Figure~\ref{fig:MNF_FILTER} shows the result of applying forward
// and reverse MNF transformation to a 8 bands Worldview2 image.
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{MNF-input-pretty.eps}
// \includegraphics[width=0.32\textwidth]{MNF-output-pretty.eps}
// \includegraphics[width=0.32\textwidth]{MNF-invoutput-pretty.eps}
// \itkcaption[PCA Filter (forward trasnformation)]{Result of applying the
// \doxygen{otb}{MNFImageFilter} to an image. From left
// to right:
// original image, color composition with first three principal
// components and output of the
// inverse mode (the input RGB image).}
// \label{fig:MNF_FILTER}
// \end{figure}
//
// Software Guide : EndLatex
// This is for rendering in software guide
typedef otb::PrintableImageFilter<ImageType,ImageType> PrintFilterType;
typedef PrintFilterType::OutputImageType VisuImageType;
typedef otb::ImageFileWriter<VisuImageType> VisuWriterType;
PrintFilterType::Pointer inputPrintFilter = PrintFilterType::New();
PrintFilterType::Pointer outputPrintFilter = PrintFilterType::New();
PrintFilterType::Pointer invertOutputPrintFilter = PrintFilterType::New();
VisuWriterType::Pointer inputVisuWriter = VisuWriterType::New();
VisuWriterType::Pointer outputVisuWriter = VisuWriterType::New();
VisuWriterType::Pointer invertOutputVisuWriter = VisuWriterType::New();
inputPrintFilter->SetInput(reader->GetOutput());
inputPrintFilter->SetChannel(5);
inputPrintFilter->SetChannel(3);
inputPrintFilter->SetChannel(2);
outputPrintFilter->SetInput(MNFfilter->GetOutput());
outputPrintFilter->SetChannel(1);
outputPrintFilter->SetChannel(2);
outputPrintFilter->SetChannel(3);
invertOutputPrintFilter->SetInput(invFilter->GetOutput());
invertOutputPrintFilter->SetChannel(5);
invertOutputPrintFilter->SetChannel(3);
invertOutputPrintFilter->SetChannel(2);
inputVisuWriter->SetInput(inputPrintFilter->GetOutput());
outputVisuWriter->SetInput(outputPrintFilter->GetOutput());
invertOutputVisuWriter->SetInput(invertOutputPrintFilter->GetOutput());
inputVisuWriter->SetFileName(inpretty);
outputVisuWriter->SetFileName(outpretty);
invertOutputVisuWriter->SetFileName(invoutpretty);
inputVisuWriter->Update();
outputVisuWriter->Update();
invertOutputVisuWriter->Update();
return EXIT_SUCCESS;
}
|