File: SimpleDisparityMapEstimationExample.cxx

package info (click to toggle)
otb 6.6.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 47,068 kB
  • sloc: cpp: 316,755; ansic: 4,474; sh: 1,610; python: 497; perl: 92; makefile: 82; java: 72
file content (526 lines) | stat: -rw-r--r-- 18,858 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */



//  Software Guide : BeginCommandLineArgs
//    INPUTS: {StereoFixed.png}, {StereoMoving.png}
//    OUTPUTS: {deformationFieldOutput.png}, {resampledMovingOutput.png}
//    5 5 9 7 10 100 0.8
//  Software Guide : EndCommandLineArgs

// Software Guide : BeginLatex
//
// This example demonstrates the use of the \doxygen{otb}{DisparityMapEstimationMethod}, along with
// the \doxygen{otb}{NearestPointDisplacementFieldGenerator}. The first filter performs deformation estimation
// according to a given transform, using embedded ITK registration framework. It takes as input a possibly non regular
// point set and produces a point set with associated point data representing the deformation.
//
// The second filter generates a deformation field by using nearest neighbor interpolation on the deformation values from
// the point set. More advanced methods for deformation field interpolation are also available.
//
// The first step toward the use of these filters is to include the proper header files.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "otbDisparityMapEstimationMethod.h"
#include "itkTranslationTransform.h"
#include "itkNormalizedCorrelationImageToImageMetric.h"
#include "itkWindowedSincInterpolateImageFunction.h"
#include "itkGradientDescentOptimizer.h"
#include "otbBSplinesInterpolateDisplacementFieldGenerator.h"
#include "itkWarpImageFilter.h"
// Software Guide : EndCodeSnippet

#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbMultiToMonoChannelExtractROI.h"

int main(int argc, char* argv[])
{
  if (argc != 12)
    {
    std::cerr << "Usage: " << argv[0];
    std::cerr << " fixedFileName movingFileName fieldOutName imageOutName ";
    std::cerr <<
    "pointSetStepX pointSetStepY explorationSize windowSize learningRate ";
    std::cerr << "nbIterations metricThreshold";

    return EXIT_FAILURE;
    }

  const unsigned int Dimension = 2;

  // Software Guide : BeginLatex
  //
  // Then we must decide what pixel type to use for the image. We choose to do
  // all the computation in floating point precision and rescale the results
  // between 0 and 255 in order to export PNG images.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef double        PixelType;
  typedef unsigned char OutputPixelType;
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  The images are defined using the pixel type and the dimension. Please note that
  //  the \doxygen{otb}{NearestPointDisplacementFieldGenerator} generates a
  //  \doxygen{otb}{VectorImage} to represent the deformation field in both
  //  image directions.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef otb::Image<PixelType, Dimension>       ImageType;
  typedef otb::Image<OutputPixelType, Dimension> OutputImageType;
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  The next step is to define the transform we have chosen to model the deformation. In this
  // example the deformation is modeled as a \doxygen{itk}{TranslationTransform}.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::TranslationTransform<double, Dimension> TransformType;
  typedef TransformType::ParametersType                ParametersType;
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // Then we define the metric we will use to evaluate the local registration between the fixed and
  // the moving image. In this example we chose the \doxygen{itk}{NormalizedCorrelationImageToImageMetric}.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::NormalizedCorrelationImageToImageMetric<ImageType,
      ImageType> MetricType;
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // Disparity map estimation implies evaluation of the moving image at non-grid position. Therefore, an
  // interpolator is needed. In this example we chose the \doxygen{itk}{WindowedSincInterpolateImageFunction}.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::Function::HammingWindowFunction<3>          WindowFunctionType;
  typedef itk::ZeroFluxNeumannBoundaryCondition<ImageType> ConditionType;
  typedef itk::WindowedSincInterpolateImageFunction<ImageType, 3,
      WindowFunctionType,
      ConditionType,
      double> InterpolatorType;
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // To perform local registration, an optimizer is needed. In this example we chose the
  // \doxygen{itk}{GradientDescentOptimizer}.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::GradientDescentOptimizer OptimizerType;
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // Now we will define the point set to represent the point where to compute local disparity.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::PointSet<ParametersType, Dimension> PointSetType;
  // Software Guide : EndCodeSnippet

  typedef PointSetType::PointType                    PointType;

  // Software Guide : BeginLatex
  //
  // Now we define the disparity map estimation filter.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef otb::DisparityMapEstimationMethod<ImageType,
      ImageType,
      PointSetType> DMEstimationType;
  typedef DMEstimationType::SizeType SizeType;
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // The input image reader also has to be defined.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef otb::ImageFileReader<ImageType> ReaderType;
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // Two readers are instantiated : one for the fixed image, and one for the moving image.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  ReaderType::Pointer fixedReader = ReaderType::New();
  ReaderType::Pointer movingReader = ReaderType::New();

  fixedReader->SetFileName(argv[1]);
  movingReader->SetFileName(argv[2]);
  fixedReader->UpdateOutputInformation();
  movingReader->UpdateOutputInformation();
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // We will the create a regular point set where to compute the local disparity.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  SizeType fixedSize =
    fixedReader->GetOutput()->GetLargestPossibleRegion().GetSize();
  unsigned int NumberOfXNodes = (fixedSize[0] - 2 * atoi(argv[7]) - 1)
                                / atoi(argv[5]);
  unsigned int NumberOfYNodes = (fixedSize[1] - 2 * atoi(argv[7]) - 1)
                                / atoi(argv[6]);

  ImageType::IndexType firstNodeIndex;
  firstNodeIndex[0] = atoi(argv[7]);
  firstNodeIndex[1] = atoi(argv[7]);

  PointSetType::Pointer nodes = PointSetType::New();
  unsigned int          nodeCounter = 0;

  for (unsigned int x = 0; x < NumberOfXNodes; x++)
    {
    for (unsigned int y = 0; y < NumberOfYNodes; y++)
      {
      PointType                    p;
      p[0] = firstNodeIndex[0] + x*atoi(argv[5]);
      p[1] = firstNodeIndex[1] + y*atoi(argv[6]);
      nodes->SetPoint(nodeCounter++, p);
      }
    }
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // We build the transform, interpolator, metric and optimizer for the disparity map
  // estimation filter.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  TransformType::Pointer transform = TransformType::New();

  OptimizerType::Pointer optimizer = OptimizerType::New();
  optimizer->MinimizeOn();
  optimizer->SetLearningRate(atof(argv[9]));
  optimizer->SetNumberOfIterations(atoi(argv[10]));

  InterpolatorType::Pointer interpolator = InterpolatorType::New();

  MetricType::Pointer metric = MetricType::New();
  metric->SetSubtractMean(true);
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // We then set up the disparity map estimation filter. This filter will perform a local registration at each
  // point of the given point set using the ITK registration framework. It will produce a point set whose point data
  // reflects the disparity locally around the associated point.
  //
  // Point data will contains the following data :
  //
  // \begin{enumerate}
  // \item{The final metric value found in the registration process, }
  // \item{the deformation value in the first image direction, }
  // \item{the deformation value in the second image direction, }
  // \item{the final parameters of the transform.}
  // \end{enumerate}
  //
  // Please note that in the case of a \doxygen{itk}{TranslationTransform}, the deformation values and
  // the transform parameters are the same.
  //
  // Software Guide : EndLatex

  // Software Guide :BeginCodeSnippet

  DMEstimationType::Pointer dmestimator = DMEstimationType::New();

  dmestimator->SetTransform(transform);
  dmestimator->SetOptimizer(optimizer);
  dmestimator->SetInterpolator(interpolator);
  dmestimator->SetMetric(metric);

  SizeType windowSize, explorationSize;
  explorationSize.Fill(atoi(argv[7]));
  windowSize.Fill(atoi(argv[8]));

  dmestimator->SetWinSize(windowSize);
  dmestimator->SetExploSize(explorationSize);
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // The initial transform parameters can be set via the \code{SetInitialTransformParameters()} method.
  // In our case, we simply fill the parameter array with null values.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  DMEstimationType::ParametersType
  initialParameters(transform->GetNumberOfParameters());
  initialParameters[0] = 0.0;
  initialParameters[1] = 0.0;
  dmestimator->SetInitialTransformParameters(initialParameters);
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // Now we can set the input for the deformation field estimation filter. Fixed image can be set using the \code{SetFixedImage()}
  // method, moving image can be set using the \code{SetMovingImage()}, and input point set can be set using the
  // \code{SetPointSet()} method.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  dmestimator->SetFixedImage(fixedReader->GetOutput());
  dmestimator->SetMovingImage(movingReader->GetOutput());
  dmestimator->SetPointSet(nodes);
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // Once the estimation has been performed by the \doxygen{otb}{DisparityMapEstimationMethod}, one can generate
  // the associated deformation field (that means translation in first and second image direction).
  // It will be represented as a \doxygen{otb}{VectorImage}.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef otb::VectorImage<PixelType, Dimension> DisplacementFieldType;
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // For the deformation field estimation, we will use the \doxygen{otb}{BSplinesInterpolateDisplacementFieldGenerator}.
  // This filter will perform a nearest neighbor interpolation on the deformation values in the point set data.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef otb::BSplinesInterpolateDisplacementFieldGenerator<PointSetType,
      DisplacementFieldType>
  GeneratorType;

  // Software GUide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // The disparity map estimation filter is instantiated.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  GeneratorType::Pointer generator = GeneratorType::New();
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // We must then specify the input point set using the \code{SetPointSet()} method.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  generator->SetPointSet(dmestimator->GetOutput());
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // One must also specify the origin, size and spacing of the output deformation field.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  generator->SetOutputOrigin(fixedReader->GetOutput()->GetOrigin());
  generator->SetOutputSpacing(fixedReader->GetOutput()->GetSignedSpacing());
  generator->SetOutputSize(fixedReader->GetOutput()
                           ->GetLargestPossibleRegion().GetSize());
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // The local registration process can lead to wrong deformation values and transform parameters. To Select only
  // points in point set for which the registration process was successful, one can set a threshold on the final metric
  // value : points for which the absolute final metric value is below this threshold will be discarded. This
  // threshold can be set with the \code{SetMetricThreshold()} method.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  generator->SetMetricThreshold(atof(argv[11]));
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // \relatedClasses
  // \begin{itemize}
  // \item \doxygen{otb}{NNearestPointsLinearInterpolateDisplacementFieldGenerator}
  // \item \doxygen{otb}{BSplinesInterpolateDisplacementFieldGenerator}
  // \item \doxygen{otb}{NearestTransformDisplacementFieldGenerator}
  // \item \doxygen{otb}{NNearestTransformsLinearInterpolateDisplacementFieldGenerator}
  // \item \doxygen{otb}{BSplinesInterpolateTransformDisplacementFieldGenerator}
  // \end{itemize}
  //
  // Software Guide : EndLatex

  // Software Guide : BeginLatex
  //
  // Now we can warp our fixed image according to the estimated deformation field. This will be performed by the
  // \doxygen{itk}{WarpImageFilter}. First, we define this filter.
  //
  // Software Guide : EndLatex

  // Software Guide :  BeginCodeSnippet

  typedef itk::WarpImageFilter<ImageType, ImageType,
      DisplacementFieldType> ImageWarperType;
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // Then we instantiate it.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  ImageWarperType::Pointer warper = ImageWarperType::New();
  // Software Guide : EndCodeSnippet

  // Software Guide  : BeginLatex
  //
  // We set the input image to warp using the \code{SetInput()} method, and the deformation field
  // using the \code{SetDisplacementField()} method.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  warper->SetInput(movingReader->GetOutput());
  warper->SetDisplacementField(generator->GetOutput());
  warper->SetOutputOrigin(fixedReader->GetOutput()->GetOrigin());
  warper->SetOutputSpacing(fixedReader->GetOutput()->GetSignedSpacing());
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // In order to write the result to a PNG file, we will rescale it on a proper range.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::RescaleIntensityImageFilter<ImageType,
      OutputImageType> RescalerType;

  RescalerType::Pointer outputRescaler = RescalerType::New();
  outputRescaler->SetInput(warper->GetOutput());
  outputRescaler->SetOutputMaximum(255);
  outputRescaler->SetOutputMinimum(0);
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // We can now write the image to a file. The filters are executed by invoking
  // the \code{Update()} method.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef otb::ImageFileWriter<OutputImageType> WriterType;

  WriterType::Pointer outputWriter = WriterType::New();
  outputWriter->SetInput(outputRescaler->GetOutput());
  outputWriter->SetFileName(argv[4]);
  outputWriter->Update();
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // We also want to write the deformation field along the first direction to a file.
  // To achieve this we will use the \doxygen{otb}{MultiToMonoChannelExtractROI} filter.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef otb::MultiToMonoChannelExtractROI<PixelType,
      PixelType>
  ChannelExtractionFilterType;

  ChannelExtractionFilterType::Pointer channelExtractor
    = ChannelExtractionFilterType::New();

  channelExtractor->SetInput(generator->GetOutput());
  channelExtractor->SetChannel(1);

  RescalerType::Pointer fieldRescaler = RescalerType::New();
  fieldRescaler->SetInput(channelExtractor->GetOutput());
  fieldRescaler->SetOutputMaximum(255);
  fieldRescaler->SetOutputMinimum(0);

  WriterType::Pointer fieldWriter = WriterType::New();
  fieldWriter->SetInput(fieldRescaler->GetOutput());
  fieldWriter->SetFileName(argv[3]);
  fieldWriter->Update();
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // Figure~\ref{fig:SIMPLEDISPARITYMAPESTIMATIONOUTPUT} shows the result of applying disparity map estimation on a stereo pair
  // using a regular point set, followed by deformation field estimation using Splines and fixed image resampling.
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=0.20\textwidth]{StereoFixed.eps}
  // \includegraphics[width=0.20\textwidth]{StereoMoving.eps}
  // \includegraphics[width=0.20\textwidth]{deformationFieldOutput.eps}
  // \includegraphics[width=0.20\textwidth]{resampledMovingOutput.eps}
  // \itkcaption[Displacement field and resampling from disparity map estimation]{From left
  // to right and top to bottom: fixed input image, moving image with a sinusoid deformation,
  // estimated deformation field in the horizontal direction, resampled moving image.}
  // \label{fig:SIMPLEDISPARITYMAPESTIMATIONOUTPUT}
  // \end{figure}
  //
  // Software Guide : EndLatex

  return EXIT_SUCCESS;
}