1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {QB_Suburb.png}
// OUTPUTS: {QB_SuburbAlign.png}
// 2
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example illustrates the use of the \doxygen{otb}{ImageToPathListAlignFilter}.
// This filter allows extracting meaningful alignments. Alignments
// (that is edges and lines) are detected using the {\em Gestalt}
// approach proposed by Desolneux et al. \cite{desolneux}. In this
// context, an event is
// considered meaningful if the expectation of its occurrence would be
// very small in a random image. One can thus consider that in a
// random image the direction of the gradient of a given point is
// uniformly distributed, and that neighbouring pixels have a very low
// probability of having the same gradient direction. This algorithm
// gives a set of straight line segments defined by the two extremity
// coordinates under the form of a \code{std::list} of
// \code{itk::PolyLineParametricPath}.
//
// The first step required to use this filter is to include its header.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "otbImageToPathListAlignFilter.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
// In order to visualize the detected alignments, we will use the
// facility class \doxygen{otb}{DrawPathFilter} which draws a
// \code{itk::PolyLineParametricPath} on top of a given image.
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkPolyLineParametricPath.h"
#include "otbDrawPathFilter.h"
// Software Guide : EndCodeSnippet
#include "otbImageFileWriter.h"
#include "otbImageFileReader.h"
#include <stdio.h>
#include <iostream>
int main(int argc, char *argv[])
{
if (argc != 4)
{
std::cout << "Usage : " << argv[0] << " inputImage outputImage epsilon" <<
std::endl;
return EXIT_FAILURE;
}
const char * inputFilename = argv[1];
const char * outputFilename = argv[2];
typedef unsigned short InputPixelType;
typedef unsigned short OutputPixelType;
const unsigned int Dimension = 2;
typedef otb::Image<InputPixelType, Dimension> InputImageType;
typedef otb::Image<OutputPixelType, Dimension> OutputImageType;
typedef otb::ImageFileReader<InputImageType> ReaderType;
typedef otb::ImageFileWriter<OutputImageType> WriterType;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);
reader->Update();
// Software Guide : BeginLatex
//
// The \doxygen{otb}{ImageToPathListAlignFilter} is templated over the
// input image type and the output path type, so we start by
// defining:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::PolyLineParametricPath<Dimension> PathType;
typedef otb::ImageToPathListAlignFilter<InputImageType, PathType>
ListAlignFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next, we build the pipeline.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ListAlignFilterType::Pointer alignFilter = ListAlignFilterType::New();
alignFilter->SetInput(reader->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can choose the number of accepted false alarms in the
// detection with the method \code{SetEps()} for which the parameter
// is of the form $-log10(\text{max. number of false alarms})$.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
alignFilter->SetEps(atoi(argv[3]));
// Software Guide : EndCodeSnippet
alignFilter->Update();
// Software Guide : BeginLatex
//
// As stated, above, the \doxygen{otb}{DrawPathFilter}, is useful for
// drawint the detected alignments. This class is templated over
// the input image and path types and also on the output image
// type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::DrawPathFilter<InputImageType, PathType,
OutputImageType> DrawPathFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
// We will now go through the list of detected paths and feed them
// to the \doxygen{otb}{DrawPathFilter} inside a loop. We will use a list
// iterator inside a \code{while} statement.
// Software Guide : BeginCodeSnippet
typedef ListAlignFilterType::OutputPathListType ListType;
ListType* pathList = alignFilter->GetOutput();
ListType::Iterator listIt = pathList->Begin();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We define a dummy image will be iteratively fed to the
// \doxygen{otb}{DrawPathFilter} after the drawing of each alignment.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
InputImageType::Pointer backgroundImage = reader->GetOutput();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We iterate through the list and write the result to a file.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
while (listIt != pathList->End())
{
DrawPathFilterType::Pointer drawPathFilter = DrawPathFilterType::New();
drawPathFilter->SetImageInput(backgroundImage);
drawPathFilter->SetInputPath(listIt.Get());
drawPathFilter->SetValue(itk::NumericTraits<OutputPixelType>::max());
drawPathFilter->Update();
backgroundImage = drawPathFilter->GetOutput();
++listIt;
}
writer->SetInput(backgroundImage);
// Software Guide : EndCodeSnippet
writer->Update();
// Software Guide : BeginLatex
// Figure~\ref{fig:Align} shows the result of applying the alignment
// detection to a small patch extracted from a VHR image.
// \begin{figure}
// \center
// \includegraphics[width=0.35\textwidth]{QB_Suburb.eps}
// \includegraphics[width=0.35\textwidth]{QB_SuburbAlign.eps}
// \itkcaption[Alignment Detection Application]{Result of applying the
// \doxygen{otb}{ImageToPathListAlignFilter} to a VHR image of a suburb.}
// \label{fig:Align}
// \end{figure}
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|