1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
/*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {ROISpot5.png}
// OUTPUTS: {ROISpot5SURF.png}
// 3 3
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example illustrates the use of the
// \doxygen{otb}{ImageToSURFKeyPointSetFilter}. The Speed-Up Robust
// Features (or SURF) is an algorithm in computer vision to detect and
// describe local features in images. The algorithm is detailed in
// \cite{SURF}. The applications of SURF are the same as those for
// SIFT.
//
// The first step required to use this filter is to include its header file.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "otbImageToSURFKeyPointSetFilter.h"
// Software Guide : EndCodeSnippet
#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkVariableLengthVector.h"
#include "itkRGBPixel.h"
#include "itkImageRegionIterator.h"
#include <iostream>
#include <fstream>
int main(int argc, char * argv[])
{
if (argc != 5)
{
std::cerr << "Usage: " << argv[0];
std::cerr << " InputImage OutputImage octaves scales" << std::endl;
return 1;
}
const char * infname = argv[1];
const char * outputImageFilename = argv[2];
const unsigned int octaves = atoi(argv[3]);
const unsigned int scales = atoi(argv[4]);
const unsigned int Dimension = 2;
// Software Guide : BeginLatex
//
// We will start by defining the required types. We will work with a
// scalar image of float pixels. We also define the corresponding
// image reader.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef float RealType;
typedef otb::Image<RealType, Dimension> ImageType;
typedef otb::ImageFileReader<ImageType> ReaderType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The SURF descriptors will be stored in a point set containing the
// vector of features.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::VariableLengthVector<RealType> RealVectorType;
typedef itk::PointSet<RealVectorType, Dimension> PointSetType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The SURF filter itself is templated over the input image and the
// generated point set.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::ImageToSURFKeyPointSetFilter<ImageType, PointSetType>
ImageToFastSURFKeyPointSetFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We instantiate the reader.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(infname);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We instantiate the filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageToFastSURFKeyPointSetFilterType::Pointer filter =
ImageToFastSURFKeyPointSetFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We plug the filter and set the number of scales for the SURF
// computation. We can afterwards run the processing with the
// \code{Update()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetInput(reader->GetOutput());
filter->SetOctavesNumber(octaves);
filter->SetScalesNumber(scales);
filter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Once the SURF are computed, we may want to draw them on top of the
// input image. In order to do this, we will create the following RGB
// image and the corresponding writer:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char PixelType;
typedef itk::RGBPixel<PixelType> RGBPixelType;
typedef otb::Image<RGBPixelType, 2> OutputImageType;
typedef otb::ImageFileWriter<OutputImageType> WriterType;
OutputImageType::Pointer outputImage = OutputImageType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We set the regions of the image by copying the information from the
// input image and we allocate the memory for the output image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
outputImage->SetRegions(reader->GetOutput()->GetLargestPossibleRegion());
outputImage->Allocate();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now proceed to copy the input image into the output one
// using region iterators. The input image is a grey level one. The
// output image will be made of color crosses for each SURF on top of
// the grey level input image. So we start by copying the grey level
// values on each of the 3 channels of the color image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
itk::ImageRegionIterator<OutputImageType> iterOutput(
outputImage,
outputImage->
GetLargestPossibleRegion());
itk::ImageRegionIterator<ImageType> iterInput(reader->GetOutput(),
reader->GetOutput()->
GetLargestPossibleRegion());
for (iterOutput.GoToBegin(), iterInput.GoToBegin();
!iterOutput.IsAtEnd();
++iterOutput, ++iterInput)
{
OutputImageType::PixelType rgbPixel;
rgbPixel.SetRed(static_cast<PixelType>(iterInput.Get()));
rgbPixel.SetGreen(static_cast<PixelType>(iterInput.Get()));
rgbPixel.SetBlue(static_cast<PixelType>(iterInput.Get()));
iterOutput.Set(rgbPixel);
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We are now going to plot color crosses on the output image. We will
// need to define offsets (top, bottom, left and right) with respect
// to the SURF position in order to draw the cross segments.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageType::OffsetType t = {{ 0, 1}};
ImageType::OffsetType b = {{ 0, -1}};
ImageType::OffsetType l = {{ 1, 0}};
ImageType::OffsetType r = {{-1, 0}};
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now, we are going to access the point set generated by the SURF
// filter. The points are stored into a points container that we are
// going to walk through using an iterator. These are the types needed
// for this task:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef PointSetType::PointsContainer PointsContainerType;
typedef PointsContainerType::Iterator PointsIteratorType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We set the iterator to the beginning of the point set.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
PointsIteratorType pIt = filter->GetOutput()->GetPoints()->Begin();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We get the information about image size and spacing before drawing
// the crosses.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageType::SpacingType spacing = reader->GetOutput()->GetSignedSpacing();
ImageType::PointType origin = reader->GetOutput()->GetOrigin();
//OutputImageType::SizeType size = outputImage->GetLargestPossibleRegion().GetSize();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// And we iterate through the SURF set:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
while (pIt != filter->GetOutput()->GetPoints()->End())
{
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We get the pixel coordinates for each SURF by using the
// \code{Value()} method on the point set iterator. We use the
// information about size and spacing in order to convert the physical
// coordinates of the point into pixel coordinates.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageType::IndexType index;
index[0] = static_cast<unsigned int>(vcl_floor(
static_cast<double>(
(pIt.Value()[0] -
origin[0]) / spacing[0] + 0.5
)));
index[1] = static_cast<unsigned int>(vcl_floor(
static_cast<double>(
(pIt.Value()[1] -
origin[1]) / spacing[1] + 0.5
)));
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We create a green pixel.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
OutputImageType::PixelType keyPixel;
keyPixel.SetRed(0);
keyPixel.SetGreen(255);
keyPixel.SetBlue(0);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We draw the crosses using the offsets and checking that we are
// inside the image, since SURFs on the image borders would cause an
// out of bounds pixel access.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
if (outputImage->GetLargestPossibleRegion().IsInside(index))
{
outputImage->SetPixel(index, keyPixel);
if (outputImage->GetLargestPossibleRegion().IsInside(index +
t))
outputImage->
SetPixel(index + t, keyPixel);
if (outputImage->GetLargestPossibleRegion().IsInside(index +
b))
outputImage->
SetPixel(index + b, keyPixel);
if (outputImage->GetLargestPossibleRegion().IsInside(index +
l))
outputImage->
SetPixel(index + l, keyPixel);
if (outputImage->GetLargestPossibleRegion().IsInside(index +
r))
outputImage->
SetPixel(index + r, keyPixel);
}
++pIt;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, we write the image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(outputImageFilename);
writer->SetInput(outputImage);
writer->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
// Figure~\ref{fig:SURFFast} shows the result of applying the SURF
// point detector to a small patch extracted from a Spot 5 image.
// \begin{figure}
// \center
// \includegraphics[width=0.40\textwidth]{ROISpot5.eps}
// \includegraphics[width=0.40\textwidth]{ROISpot5SURF.eps}
// \itkcaption[SURF Application]{Result of applying the
// \doxygen{otb}{ImageToSURFKeyPointSetFilter} to a Spot 5
// image.}
// \label{fig:SURFFast}
// \end{figure}
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|