File: MorphologicalPyramidSegmentationExample.cxx

package info (click to toggle)
otb 6.6.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 47,068 kB
  • sloc: cpp: 316,755; ansic: 4,474; sh: 1,610; python: 497; perl: 92; makefile: 82; java: 72
file content (230 lines) | stat: -rw-r--r-- 8,695 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


// Software Guide : BeginLatex
//
// This example illustrates the use of the
// \doxygen{otb}{MorphologicalSegmentationFilter}. This filter
// performs a segmentation of the details \code{supFilter} and
// \code{infFilter} extracted with the morphological pyramid. The
// segmentation algorithm used is based on seeds extraction using the
// \doxygen{otb}{ImageToPointSetFilter}, followed by a connected
// threshold segmentation using the
// \doxygen{itk}{ConnectedThresholdImageFilter}. The threshold for seeds
// extraction and segmentation are computed using quantiles. A pre
// processing step is applied by multiplying the full resolution
// brighter details (resp. darker details) with the original image
// (resp. the inverted original image). This performs an enhancement of
// the regions contour precision. The details from the pyramid are set
// via the \code{SetBrighterDetails()} and \code{SetDarkerDetails()}
// methods. The brighter and darker details depend on the filter used
// in the pyramid analysis. If the
// \doxygen{otb}{OpeningClosingMorphologicalFilter} filter is used,
// then the brighter details are those from the \code{supFilter} image
// list, whereas if the
// \doxygen{otb}{ClosingOpeningMorphologicalFilter} filter is used,
// the brighter details are those from the \code{infFilter} list. The
// output of the segmentation filter is a single segmentation images
// list, containing first the brighter details segmentation from
// higher scale to lower, and then the darker details in the same
// order. The attention of the user is drawn to the fact that since
// the label filter used internally will deal with a large number of
// labels, the \code{OutputPixelType} is required to be sufficiently
// precise. Unsigned short or Unsigned long would be a good choice,
// unless the user has a very good reason to think that a less precise
// type will be sufficient. The first step to use this filter is to
// include its header file.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "otbMorphologicalPyramidSegmentationFilter.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The mathematical morphology filters to be used have also to be
// included here, as well as the morphological pyramid analysis filter.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "otbOpeningClosingMorphologicalFilter.h"
#include "itkBinaryBallStructuringElement.h"
#include "otbMorphologicalPyramidAnalysisFilter.h"
// Software Guide : EndCodeSnippet

#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbImage.h"
#include "itkMacro.h"

int main(int itkNotUsed(argc), char * argv[])
{

  const char*        inputFilename = argv[1];
  const char*        outputFilenamePrefix = argv[2];
  const char *       outputFilenameSuffix = argv[3];
  const unsigned int numberOfLevels = atoi(argv[4]);
  const double       decimationRatio = atof(argv[5]);
  const float        seedsQuantile = atof(argv[6]);
  const float        segmentationQuantile = atof(argv[7]);
  const unsigned int minObjectSize = atoi(argv[8]);

// Software Guide : BeginLatex
//
// As usual, we start by defining the types for the pixels, the
// images, the reader and the writer. We also define the types needed
// for the morphological pyramid analysis.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  const unsigned int Dimension = 2;
  typedef unsigned char  InputPixelType;
  typedef unsigned short OutputPixelType;

  typedef otb::Image<InputPixelType, Dimension>  InputImageType;
  typedef otb::Image<OutputPixelType, Dimension> OutputImageType;

  typedef otb::ImageFileReader<InputImageType>  ReaderType;
  typedef otb::ImageFileWriter<OutputImageType> WriterType;

  typedef itk::BinaryBallStructuringElement<InputPixelType, Dimension>
  StructuringElementType;
  typedef otb::OpeningClosingMorphologicalFilter<InputImageType,
      InputImageType,
      StructuringElementType>
  OpeningClosingFilterType;
  typedef otb::MorphologicalPyramidAnalysisFilter<InputImageType,
      InputImageType,
      OpeningClosingFilterType>
  PyramidFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now define the type for the
// \doxygen{otb}{MorphologicalPyramidSegmentationFilter} which is
// templated over the input and output image types.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef otb::MorphologicalPyramidSegmentationFilter<InputImageType,
      OutputImageType>
  SegmentationFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Since the output of the segmentation filter is a  list of images,
// we define an iterator type which will be used to access the
// segmented images.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  typedef SegmentationFilterType::OutputImageListIteratorType
  OutputListIteratorType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The following code snippet shows how to read the input image and
// perform the morphological pyramid analysis.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName(inputFilename);

  PyramidFilterType::Pointer pyramid = PyramidFilterType::New();
  pyramid->SetNumberOfLevels(numberOfLevels);
  pyramid->SetDecimationRatio(decimationRatio);
  pyramid->SetInput(reader->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now instantiate the segmentation filter and set its
// parameters. As one can see, the \code{SetReferenceImage()} is used to
// pass the original image in order to obtain sharp region
// boundaries. Using the \code{SetBrighterDetails()} and
// \code{SetDarkerDetails()} the output of the analysis is passed to the
// filter. Finally, the parameters for the segmentation are set by
// using the \code{SetSeedsQuantile()},
// \code{SetConnectedThresholdQuantile()} and
// \code{SetMinimumObjectSize()} methods.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  SegmentationFilterType::Pointer segmentation = SegmentationFilterType::New();
  segmentation->SetReferenceImage(reader->GetOutput());
  segmentation->SetBrighterDetails(pyramid->GetSupFilter());
  segmentation->SetDarkerDetails(pyramid->GetInfFilter());
  segmentation->SetSeedsQuantile(seedsQuantile);
  segmentation->SetConnectedThresholdQuantile(segmentationQuantile);
  segmentation->SetMinimumObjectSize(minObjectSize);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The pipeline is executed bu calling the \code{Update()} method.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  segmentation->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, we get an iterator to the list generated as output for the
// segmentation and we use it to iterate through the list and write
// the images to files.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  OutputListIteratorType it = segmentation->GetOutput()->Begin();
  WriterType::Pointer    writer;
  int                    index = 1;
  std::stringstream      oss;
  while (it != segmentation->GetOutput()->End())
    {
    oss << outputFilenamePrefix << index << "." << outputFilenameSuffix;
    writer = WriterType::New();
    writer->SetInput(it.Get());
    writer->SetFileName(oss.str().c_str());
    writer->Update();
    std::cout << oss.str() << " file written." << std::endl;
    oss.str("");
    ++index;
    ++it;
    }
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The user will pay attention to the fact that the list contains
// first the brighter details segmentation from
// higher scale to lower, and then the darker details in the same
// order.
//
// Software Guide : EndLatex

  return EXIT_SUCCESS;
}