File: EstimateAffineTransformationExample.cxx

package info (click to toggle)
otb 6.6.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 47,068 kB
  • sloc: cpp: 316,755; ansic: 4,474; sh: 1,610; python: 497; perl: 92; makefile: 82; java: 72
file content (362 lines) | stat: -rw-r--r-- 12,138 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */



//  Software Guide : BeginCommandLineArgs
//    INPUTS: {QB_Suburb.png}, {QB_SuburbR10X13Y17.png}
//    OUTPUTS: {AffineTransformationOutput.png}, {AffineTransformationTxtOutput.txt}
//    2 3 0 0 0.3 1
//  Software Guide : EndCommandLineArgs

// Software Guide : BeginLatex
//
// This example demonstrates the use of the
// \doxygen{otb}{KeyPointSetsMatchingFilter} for transformation
// estimation between 2 images. The idea here is to match SIFTs extracted from both the
// fixed and the moving images. The use of SIFTs is demonstrated in
// section \ref{sec:SIFTDetector}. The
// \doxygen{otb}{LeastSquareAffineTransformEstimator} will be used
// to generate a transformation field by using
// mean square optimisation to estimate
// an affine transform from the point set.
//
// The first step toward the use of these filters is to include the
// appropriate header files.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "otbKeyPointSetsMatchingFilter.h"
#include "otbImageToSIFTKeyPointSetFilter.h"
// Software Guide : EndCodeSnippet


#include "otbImage.h"
#include "otbMacro.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkPointSet.h"
#include "otbLeastSquareAffineTransformEstimator.h"
#include "itkResampleImageFilter.h"

int main(int argc, char* argv[])
{
  if (argc != 11)
    {
    std::cerr << "Usage: " << argv[0];
    std::cerr <<
    " fixedFileName movingFileName resamplingImageFileName  transfofname octaves scales threshold ratio secondOrderThreshold useBackMatching"
              << std::endl;
    return EXIT_FAILURE;
    }

  const char * fixedfname           = argv[1];
  const char * movingfname          = argv[2];
  const char * outputImageFilename  = argv[3];
  const char * outputTransformationFilename  = argv[4];

  const unsigned int octaves        = atoi(argv[5]);
  const unsigned int scales         = atoi(argv[6]);
  float              threshold                   = atof(argv[7]);
  float              ratio                       = atof(argv[8]);
  const double       secondOrderThreshold = atof(argv[9]);
  const bool         useBackMatching        = atoi(argv[10]);

  const unsigned int Dimension      = 2;

  // Software Guide : BeginLatex
  //
  // Then we must decide what pixel type to use for the image. We choose to do
  // all the computations in floating point precision and rescale the results
  // between 0 and 255 in order to export PNG images.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef double        RealType;
  typedef unsigned char OutputPixelType;

  typedef otb::Image<RealType, Dimension>        ImageType;
  typedef otb::Image<OutputPixelType, Dimension> OutputImageType;
  // Software Guide : EndCodeSnippet
  // Software Guide : BeginLatex
  //
  // The SIFTs obtained for the matching will be stored in vector
  // form inside a point set. So we need the following types:
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::VariableLengthVector<RealType>      RealVectorType;
  typedef itk::PointSet<RealVectorType, Dimension> PointSetType;
  // Software Guide : EndCodeSnippet
  // Software Guide : BeginLatex
  //
  // The filter for computing the SIFTs has a type defined as follows:
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef otb::ImageToSIFTKeyPointSetFilter<ImageType, PointSetType>
  ImageToSIFTKeyPointSetFilterType;
  // Software Guide : EndCodeSnippet
  // Software Guide : BeginLatex
  //
  // Although many choices for evaluating the distances during the
  // matching procedure exist, we choose here to use a simple
  // Euclidean distance. We can then define the type for the matching filter.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::Statistics::EuclideanDistanceMetric<RealVectorType> DistanceType;
  typedef otb::KeyPointSetsMatchingFilter<PointSetType, DistanceType>
  EuclideanDistanceMetricMatchingFilterType;
  // Software Guide : EndCodeSnippet
  // Software Guide : BeginLatex
  //
  // The following type is needed for dealing with the matched points.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef EuclideanDistanceMetricMatchingFilterType::LandmarkListType
  LandmarkListType;
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // We define the type for the image reader.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef otb::ImageFileReader<ImageType> ReaderType;
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // Two readers are instantiated : one for the fixed image, and one
  // for the moving image.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  ReaderType::Pointer fixedReader  = ReaderType::New();
  ReaderType::Pointer movingReader = ReaderType::New();

  fixedReader->SetFileName(fixedfname);
  movingReader->SetFileName(movingfname);
  fixedReader->UpdateOutputInformation();
  movingReader->UpdateOutputInformation();
  // Software Guide : EndCodeSnippet
  // Software Guide : BeginLatex
  //
  // We will now instantiate the 2 SIFT filters and the filter used
  // for the matching of the points.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  ImageToSIFTKeyPointSetFilterType::Pointer filter1 =
    ImageToSIFTKeyPointSetFilterType::New();
  ImageToSIFTKeyPointSetFilterType::Pointer filter2 =
    ImageToSIFTKeyPointSetFilterType::New();
  EuclideanDistanceMetricMatchingFilterType::Pointer euclideanMatcher =
    EuclideanDistanceMetricMatchingFilterType::New();
  // Software Guide : EndCodeSnippet
  // Software Guide : BeginLatex
  //
  // We plug the pipeline and set the parameters.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter1->SetInput(fixedReader->GetOutput());
  filter2->SetInput(movingReader->GetOutput());

  filter1->SetOctavesNumber(octaves);
  filter1->SetScalesNumber(scales);

  filter1->SetDoGThreshold(threshold);
  filter1->SetEdgeThreshold(ratio);

  filter2->SetOctavesNumber(octaves);
  filter2->SetScalesNumber(scales);

  filter2->SetDoGThreshold(threshold);
  filter2->SetEdgeThreshold(ratio);
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // We use a simple Euclidean distance to select
  // matched points.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  euclideanMatcher->SetInput1(filter1->GetOutput());
  euclideanMatcher->SetInput2(filter2->GetOutput());

  euclideanMatcher->SetDistanceThreshold(secondOrderThreshold);
  euclideanMatcher->SetUseBackMatching(useBackMatching);

  euclideanMatcher->Update();
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // The matched points will be stored into a landmark list.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  LandmarkListType::Pointer landmarkList;
  landmarkList = euclideanMatcher->GetOutput();
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // Apply Mean square algorithm
  //
  // Software Guide : EndLatex
  // Software Guide : BeginCodeSnippet
  typedef itk::Point<double, 2>                                 MyPointType;
  typedef otb::LeastSquareAffineTransformEstimator<MyPointType> EstimatorType;

  // instantiation of the estimator of the affine transformation
  EstimatorType::Pointer estimator = EstimatorType::New();
  std::cout << "landmark list size " << landmarkList->Size() << std::endl;
  for (LandmarkListType::Iterator it = landmarkList->Begin();
       it != landmarkList->End(); ++it)
    {
    estimator->AddTiePoints(it.Get()->GetPoint1(), it.Get()->GetPoint2());
    }

  // Trigger computation
  estimator->Compute();
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // Resample the initial image with the transformation evaluated
  //
  // Software Guide : EndLatex
//  Software Guide : BeginLatex
//
//  It is common, as the last step of a registration task, to use
//  the resulting transform to map the moving image into the fixed
//  image space.  This is easily done with the
//  \doxygen{itk}{ResampleImageFilter}. First, a ResampleImageFilter
//  type is instantiated using the image types.
//
//  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::ResampleImageFilter<
      ImageType,
      OutputImageType>    ResampleFilterType;
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  A resampling filter is created and the moving image is connected as
  //  its input.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  ResampleFilterType::Pointer resampler = ResampleFilterType::New();
  resampler->SetInput(movingReader->GetOutput());
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  The Transform that is produced as output do not need to be inversed because
  //  we apply here the resampling algorithm to the "moving" image
  // to produce the fixed image.
  //
  //  Software Guide : EndLatex

  // Write the transformation to a file
  std::ofstream ofs;
  ofs.open(outputTransformationFilename);

  // Set floatfield to format properly
  ofs.setf(std::ios::fixed, std::ios::floatfield);
  ofs.precision(10);
  ofs << "Transformation" << std::endl;
  ofs << "Estimated affine matrix: " << std::endl;
  ofs << estimator->GetMatrix() << std::endl;
  ofs << "Estimated affine offset: " << std::endl;
  ofs << estimator->GetOffset() << std::endl;
  ofs << "RMS error: " << std::endl;
  ofs << estimator->GetRMSError() << std::endl;
  ofs << "Relative residual: " << std::endl;
  ofs << estimator->GetRelativeResidual() << std::endl;

  ofs.close();
  // Software Guide : BeginCodeSnippet
  ImageType::Pointer fixedImage = fixedReader->GetOutput();

  resampler->SetTransform(estimator->GetAffineTransform());
  resampler->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
  resampler->SetOutputOrigin(fixedImage->GetOrigin());
  resampler->SetOutputSpacing(fixedImage->GetSignedSpacing());
  resampler->SetDefaultPixelValue(100);
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //
  //  Write resampled image to png
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef otb::ImageFileWriter<OutputImageType> WriterType;
  WriterType::Pointer writer = WriterType::New();

  writer->SetInput(resampler->GetOutput());
  writer->SetFileName(outputImageFilename);
  writer->Update();
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // Figure~\ref{fig:SIFTDME} shows the result of the resampled image using the
  // estimated transformation based on SIFT points
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=0.40\textwidth]{QB_Suburb.eps}
  // \includegraphics[width=0.40\textwidth]{QB_SuburbR10X13Y17.eps}
  // \includegraphics[width=0.40\textwidth]{AffineTransformationOutput.eps}
  // \itkcaption[Estimation of affine transformation using least square optimisation from SIFT points]{From left
  // to right and top to bottom: fixed input image, moving image,
  // resampled moving image.}
  // \label{fig:SIFTDME}
  // \end{figure}
  //
  // Software Guide : EndLatex

  return EXIT_SUCCESS;
}