1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
/*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Software Guide : BeginCommandLineArgs
// OUTPUTS: {mapProjectionExample-output.txt}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// Map projection is an important issue when working with satellite
// images. In the orthorectification process, converting between
// geographic and cartographic coordinates is a key step. In this
// process, everything is integrated and you don't need to know the
// details.
//
// However, sometimes, you need to go hands-on and find out the
// nitty-gritty details. This example shows you how to play with map
// projections in OTB and how to convert coordinates. In most cases,
// the underlying work is done by OSSIM.
//
// First, we start by including the otbMapProjections header. In this
// file, over 30 projections are defined and ready to use. It is easy
// to add new one.
//
// The otbGenericMapProjection enables you to instantiate a map
// projection from a WKT (Well Known Text) string, which is popular
// with OGR for example.
//
// Software Guide : EndLatex
#include <fstream>
#include <iomanip>
// Software Guide : BeginCodeSnippet
#include "otbMapProjections.h"
#include "otbGenericMapProjection.h"
// Software Guide : EndCodeSnippet
int main(int argc, char* argv[])
{
if (argc < 2)
{
std::cout << argv[0] << " <outputfile> " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We retrieve the command line parameters and put them in the
// correct variables. The transforms are going to work with an
// \doxygen{itk}{Point}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const char * outFileName = argv[1];
itk::Point<double, 2> point;
point[0] = 1.4835345;
point[1] = 43.55968261;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output of this program will be saved in a text file. We also want
// to make sure that the precision of the digits will be enough.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::ofstream file;
file.open(outFileName);
file << std::setprecision(15);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now instantiate our first map projection. Here, it is a
// UTM projection. We also need to provide the information about
// the zone and the hemisphere for the projection. These are
// specific to the UTM projection.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
otb::UtmForwardProjection::Pointer utmProjection
= otb::UtmForwardProjection::New();
utmProjection->SetZone(31);
utmProjection->SetHemisphere('N');
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The TransformPoint() method returns the coordinates of the point in the
// new projection.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
file << "Forward UTM projection: " << std::endl;
file << point << " -> ";
file << utmProjection->TransformPoint(point);
file << std::endl << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We follow the same path for the Lambert93 projection:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
otb::Lambert93ForwardProjection::Pointer lambertProjection
= otb::Lambert93ForwardProjection::New();
file << "Forward Lambert93 projection: " << std::endl;
file << point << " -> ";
file << lambertProjection->TransformPoint(point);
file << std::endl << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// If you followed carefully the previous examples, you've noticed
// that the target projections have been directly coded, which means
// that they can't be changed at run-time. What happens if you don't
// know the target projection when you're writing the program? It
// can depend on some input provided by the user (image,
// shapefile).
//
// In this situation, you can use the
// \doxygen{otb}{GenericMapProjection}. It will accept a string to
// set the projection. This string should be in the WKT format.
//
// For example:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::string projectionRefWkt = "PROJCS[\"UTM Zone 31, Northern Hemisphere\","
"GEOGCS[\"WGS 84\", DATUM[\"WGS_1984\", SPHEROID[\"WGS 84\", 6378137, 298.257223563,"
"AUTHORITY[\"EPSG\",\"7030\"]], TOWGS84[0, 0, 0, 0, 0, 0, 0],"
"AUTHORITY[\"EPSG\",\"6326\"]], PRIMEM[\"Greenwich\", 0, AUTHORITY[\"EPSG\",\"8901\"]],"
"UNIT[\"degree\", 0.0174532925199433, AUTHORITY[\"EPSG\",\"9108\"]],"
"AXIS[\"Lat\", NORTH], AXIS[\"Long\", EAST],"
"AUTHORITY[\"EPSG\",\"4326\"]], PROJECTION[\"Transverse_Mercator\"],"
"PARAMETER[\"latitude_of_origin\", 0], PARAMETER[\"central_meridian\", 3],"
"PARAMETER[\"scale_factor\", 0.9996], PARAMETER[\"false_easting\", 500000],"
"PARAMETER[\"false_northing\", 0], UNIT[\"Meter\", 1]]";
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// This string is then passed to the projection using the
// \code{SetWkt()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::GenericMapProjection<otb::TransformDirection::FORWARD> GenericMapProjection;
GenericMapProjection::Pointer genericMapProjection =
GenericMapProjection::New();
genericMapProjection->SetWkt(projectionRefWkt);
file << "Forward generic projection: " << std::endl;
file << point << " -> ";
file << genericMapProjection->TransformPoint(point);
file << std::endl << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// And of course, we don't forget to close the file:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
file.close();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The final output of the program should be:
//
// \begin{verbatim}
// Forward UTM projection:
// [1.4835345, 43.55968261] -> [377522.448427013, 4824086.71129131]
//
// Forward Lambert93 projection:
// [1.4835345, 43.55968261] -> [577437.889798954, 6274578.791561]
//
// Forward generic projection:
// [1.4835345, 43.55968261] -> [377522.448427013, 4824086.71129131]
// \end{verbatim}
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|