1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
/*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkExtractImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkLinearInterpolateImageFunction.h"
// Software Guide : BeginLatex
//
// This example illustrates how to use the sensor model read from
// image meta-data in order to perform ortho-rectification. This is a
// very basic, step-by-step example, so you understand the different
// components involved in the process. When performing real
// ortho-rectifications, you can use the example presented in section
// \ref{sec:OrthorectificationwithOTB}.
//
// We will start by including the header file for the inverse sensor model.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "otbInverseSensorModel.h"
// Software Guide : EndCodeSnippet
int main(int argc, char* argv[])
{
if (argc != 8)
{
std::cout << argv[0] << " <input_filename> <output_filename>"
<< " <upper_left_corner_longitude> <upper_left_corner_latitude>"
<< " <size_x> <size_y> <number_of_stream_divisions>"
<< std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// As explained before, the first thing to do is to create the sensor
// model in order to transform the ground coordinates in sensor
// geometry coordinates. The geoetric model will automatically be
// created by the image file reader. So we begin by declaring the
// types for the input image and the image reader.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::Image<unsigned int, 2> ImageType;
typedef otb::ImageFileReader<ImageType> ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);
ImageType::Pointer inputImage = reader->GetOutput();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We have just instantiated the reader and set the file name, but the
// image data and meta-data has not yet been accessed by it. Since we
// need the creation of the sensor model and all the image information
// (size, spacing, etc.), but we do not want to read the pixel data --
// it could be huge -- we just ask the reader to generate the output
// information needed.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
reader->GenerateOutputInformation();
std::cout << "Original input imagine spacing: " <<
reader->GetOutput()->GetSignedSpacing() << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now instantiate the sensor model -- an inverse one, since we
// want to convert ground coordinates to sensor geometry. Note that
// the choice of the specific model (SPOT5, Ikonos, etc.) is done by
// the reader and we only need to instantiate a generic model.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::InverseSensorModel<double> ModelType;
ModelType::Pointer model = ModelType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The model is parameterized by passing to it the {\em keyword list}
// containing the needed information.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
model->SetImageGeometry(reader->GetOutput()->GetImageKeywordlist());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Since we can not be sure that the image we read actually has sensor
// model information, we must check for the model validity.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
if (model->IsValidSensorModel() == false)
{
std::cerr << "Unable to create a model" << std::endl;
return 1;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The types for the input and output coordinate points can be now
// declared. The same is done for the index types.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ModelType::OutputPointType inputPoint;
typedef itk::Point <double, 2> PointType;
PointType outputPoint;
ImageType::IndexType currentIndex;
ImageType::IndexType currentIndexBis;
ImageType::IndexType pixelIndexBis;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We will now create the output image over which we will iterate in
// order to transform ground coordinates to sensor coordinates and get
// the corresponding pixel values.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageType::Pointer outputImage = ImageType::New();
ImageType::PixelType pixelValue;
ImageType::IndexType start;
start[0] = 0;
start[1] = 0;
ImageType::SizeType size;
size[0] = atoi(argv[5]);
size[1] = atoi(argv[6]);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The spacing in y direction is negative since origin is the upper left corner.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageType::SpacingType spacing;
spacing[0] = 0.00001;
spacing[1] = -0.00001;
ImageType::PointType origin;
origin[0] = strtod(argv[3], ITK_NULLPTR); //longitude
origin[1] = strtod(argv[4], ITK_NULLPTR); //latitude
ImageType::RegionType region;
region.SetSize(size);
region.SetIndex(start);
outputImage->SetOrigin(origin);
outputImage->SetRegions(region);
outputImage->SetSignedSpacing(spacing);
outputImage->Allocate();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We will now instantiate an extractor filter in order to get input
// regions by manual tiling.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ExtractImageFilter<ImageType, ImageType> ExtractType;
ExtractType::Pointer extract = ExtractType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Since the transformed coordinates in sensor geometry may not be
// integer ones, we will need an interpolator to retrieve the pixel
// values (note that this assumes that the input image was correctly
// sampled by the acquisition system).
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::LinearInterpolateImageFunction<ImageType, double>
InterpolatorType;
InterpolatorType::Pointer interpolator = InterpolatorType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We proceed now to create the image writer. We will also use a
// writer plugged to the output of the extractor filter which will
// write the temporary extracted regions. This is just for monitoring
// the process.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef otb::Image<unsigned char, 2> CharImageType;
typedef otb::ImageFileWriter<CharImageType> CharWriterType;
typedef otb::ImageFileWriter<ImageType> WriterType;
WriterType::Pointer extractorWriter = WriterType::New();
CharWriterType::Pointer writer = CharWriterType::New();
extractorWriter->SetFileName("image_temp.jpeg");
extractorWriter->SetInput(extract->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Since the output pixel type and the input pixel type are different,
// we will need to rescale the intensity values before writing them to
// a file.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::RescaleIntensityImageFilter
<ImageType, CharImageType> RescalerType;
RescalerType::Pointer rescaler = RescalerType::New();
rescaler->SetOutputMinimum(10);
rescaler->SetOutputMaximum(255);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The tricky part starts here. Note that this example is only
// intended for educationnal purposes and that you do not need to proceed
// as this. See the example in section
// \ref{sec:OrthorectificationwithOTB} in order to code
// ortho-rectification chains in a very simple way.
//
// You want to go on? OK. You have been warned.
//
// We will start by declaring an image region iterator and some
// convenience variables.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageRegionIteratorWithIndex<ImageType> IteratorType;
unsigned int NumberOfStreamDivisions;
if (atoi(argv[7]) == 0)
{
NumberOfStreamDivisions = 10;
}
else
{
NumberOfStreamDivisions = atoi(argv[7]);
}
unsigned int count = 0;
unsigned int It, j, k;
int max_x, max_y, min_x, min_y;
ImageType::IndexType iterationRegionStart;
ImageType::SizeType iteratorRegionSize;
ImageType::RegionType iteratorRegion;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The loop starts here.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
for (count = 0; count < NumberOfStreamDivisions; count++)
{
iteratorRegionSize[0] = atoi(argv[5]);
if (count == NumberOfStreamDivisions - 1)
{
iteratorRegionSize[1] = (atoi(argv[6])) - ((int) (((atoi(argv[6])) /
NumberOfStreamDivisions)
+ 0.5)) * (count);
iterationRegionStart[1] = (atoi(argv[5])) - (iteratorRegionSize[1]);
}
else
{
iteratorRegionSize[1] = (int) (((atoi(argv[6])) /
NumberOfStreamDivisions) + 0.5);
iterationRegionStart[1] = count * iteratorRegionSize[1];
}
iterationRegionStart[0] = 0;
iteratorRegion.SetSize(iteratorRegionSize);
iteratorRegion.SetIndex(iterationRegionStart);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We create an array for storing the pixel indexes.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
unsigned int pixelIndexArrayDimension = iteratorRegionSize[0] *
iteratorRegionSize[1] * 2;
int *pixelIndexArray = new int[pixelIndexArrayDimension];
int *currentIndexArray = new int[pixelIndexArrayDimension];
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We create an iterator for each piece of the image, and we iterate
// over them.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
IteratorType outputIt(outputImage, iteratorRegion);
It = 0;
for (outputIt.GoToBegin(); !outputIt.IsAtEnd(); ++outputIt)
{
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We get the current index.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
currentIndex = outputIt.GetIndex();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We transform the index to physical coordinates.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
outputImage->TransformIndexToPhysicalPoint(currentIndex, outputPoint);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We use the sensor model to get the pixel coordinates in the input
// image and we transform this coordinates to an index. Then we store
// the index in the array. Note that the \code{TransformPoint()}
// method of the model has been overloaded so that it can be used with
// a 3D point when the height of the ground point is known (DEM availability).
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
inputPoint = model->TransformPoint(outputPoint);
pixelIndexArray[It] = static_cast<int>(inputPoint[0]);
pixelIndexArray[It + 1] = static_cast<int>(inputPoint[1]);
currentIndexArray[It] = static_cast<int>(currentIndex[0]);
currentIndexArray[It + 1] = static_cast<int>(currentIndex[1]);
It = It + 2;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// At this point, we have stored all the indexes we need for the piece
// of image we are processing. We can now compute the bounds of the
// area in the input image we need to extract.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
max_x = pixelIndexArray[0];
min_x = pixelIndexArray[0];
max_y = pixelIndexArray[1];
min_y = pixelIndexArray[1];
for (j = 0; j < It; ++j)
{
if (j % 2 == 0 && pixelIndexArray[j] > max_x)
{
max_x = pixelIndexArray[j];
}
if (j % 2 == 0 && pixelIndexArray[j] < min_x)
{
min_x = pixelIndexArray[j];
}
if (j % 2 != 0 && pixelIndexArray[j] > max_y)
{
max_y = pixelIndexArray[j];
}
if (j % 2 != 0 && pixelIndexArray[j] < min_y)
{
min_y = pixelIndexArray[j];
}
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now set the parameters for the extractor using a little bit
// of margin in order to cope with irregular geometric distortions
// which could be due to topography, for instance.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageType::RegionType extractRegion;
ImageType::IndexType extractStart;
if (min_x < 10 && min_y < 10)
{
extractStart[0] = 0;
extractStart[1] = 0;
}
else
{
extractStart[0] = min_x - 10;
extractStart[1] = min_y - 10;
}
ImageType::SizeType extractSize;
extractSize[0] = (max_x - min_x) + 20;
extractSize[1] = (max_y - min_y) + 20;
extractRegion.SetSize(extractSize);
extractRegion.SetIndex(extractStart);
extract->SetExtractionRegion(extractRegion);
extract->SetInput(reader->GetOutput());
extractorWriter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We give the input image to the interpolator and we loop through the
// index array in order to get the corresponding pixel values. Note
// that for every point we check whether it is inside the extracted region.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
interpolator->SetInputImage(extract->GetOutput());
for (k = 0; k < It / 2; ++k)
{
pixelIndexBis[0] = pixelIndexArray[2 * k];
pixelIndexBis[1] = pixelIndexArray[2 * k + 1];
currentIndexBis[0] = currentIndexArray[2 * k];
currentIndexBis[1] = currentIndexArray[2 * k + 1];
if (interpolator->IsInsideBuffer(pixelIndexBis))
{
pixelValue = int(interpolator->EvaluateAtIndex(pixelIndexBis));
}
else
{
pixelValue = 0;
}
outputImage->SetPixel(currentIndexBis, pixelValue);
}
delete[] pixelIndexArray;
delete[] currentIndexArray;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// So we are done. We can now write the output image to a file after
// performing the intensity rescaling.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
writer->SetFileName(argv[2]);
rescaler->SetInput(outputImage);
writer->SetInput(rescaler->GetOutput());
writer->Update();
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
|