File: otbPredictRegression.cxx

package info (click to toggle)
otb 6.6.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 47,068 kB
  • sloc: cpp: 316,755; ansic: 4,474; sh: 1,610; python: 497; perl: 92; makefile: 82; java: 72
file content (287 lines) | stat: -rw-r--r-- 10,856 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "otbWrapperApplication.h"
#include "otbWrapperApplicationFactory.h"

#include "itkUnaryFunctorImageFilter.h"
#include "otbChangeLabelImageFilter.h"
#include "otbStandardWriterWatcher.h"
#include "otbStatisticsXMLFileReader.h"
#include "otbShiftScaleVectorImageFilter.h"
#include "otbImageClassificationFilter.h"
#include "otbMultiToMonoChannelExtractROI.h"
#include "otbImageToVectorImageCastFilter.h"
#include "otbMachineLearningModelFactory.h"

namespace otb
{
namespace Functor
{
/**
 * simple affine function : y = ax+b
 */
template<class TInput, class TOutput>
class AffineFunctor
{
public:
  typedef double InternalType;
  
  // constructor
  AffineFunctor() : m_A(1.0),m_B(0.0) {}
  
  // destructor
  virtual ~AffineFunctor() {}
  
  void SetA(InternalType a)
    {
    m_A = a;
    }
  
  void SetB(InternalType b)
    {
    m_B = b;
    }
  
  inline TOutput operator()(const TInput & x) const
    {
    return static_cast<TOutput>( static_cast<InternalType>(x)*m_A + m_B);
    }
private:
  InternalType m_A;
  InternalType m_B;
};
  
}

namespace Wrapper
{

class PredictRegression : public Application
{
public:
  /** Standard class typedefs. */
  typedef PredictRegression             Self;
  typedef Application                   Superclass;
  typedef itk::SmartPointer<Self>       Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;

  /** Standard macro */
  itkNewMacro(Self);

  itkTypeMacro(PredictRegression, otb::Application);

  /** Filters typedef */
  typedef UInt8ImageType                                                                       MaskImageType;
  typedef itk::VariableLengthVector<FloatVectorImageType::InternalPixelType>                   MeasurementType;
  typedef otb::StatisticsXMLFileReader<MeasurementType>                                        StatisticsReader;
  typedef otb::ShiftScaleVectorImageFilter<FloatVectorImageType, FloatVectorImageType>         RescalerType;
  typedef itk::UnaryFunctorImageFilter<
      FloatImageType,
      FloatImageType,
      otb::Functor::AffineFunctor<float,float> >                                               OutputRescalerType;
  typedef otb::ImageClassificationFilter<FloatVectorImageType, FloatImageType, MaskImageType>  ClassificationFilterType;
  typedef ClassificationFilterType::Pointer                                                    ClassificationFilterPointerType;
  typedef ClassificationFilterType::ModelType                                                  ModelType;
  typedef ModelType::Pointer                                                                   ModelPointerType;
  typedef ClassificationFilterType::ValueType                                                  ValueType;
  typedef ClassificationFilterType::LabelType                                                  LabelType;
  typedef otb::MachineLearningModelFactory<ValueType, LabelType>                               MachineLearningModelFactoryType;

protected:

  ~PredictRegression() override
    {
    MachineLearningModelFactoryType::CleanFactories();
    }

private:
  void DoInit() override
  {
    SetName("PredictRegression");
    SetDescription("Performs a prediction of the input image according to a regression model file.");

    // Documentation
    SetDocName("Predict Regression");
    SetDocLongDescription("This application predict output values from an input"
                          " image, based on a regression model file produced by"
                          " the TrainRegression application. Pixels of the "
                          "output image will contain the predicted values from"
                          "the regression model (single band). The input pixels"
                          " can be optionally centered and reduced according "
                          "to the statistics file produced by the "
                          "ComputeImagesStatistics application. An optional "
                          "input mask can be provided, in which case only "
                          "input image pixels whose corresponding mask value "
                          "is greater than 0 will be processed. The remaining"
                          " of pixels will be given the value 0 in the output"
                          " image.");

    SetDocLimitations("The input image must contain the feature bands used for"
                      " the model training (without the predicted value). "
                      "If a statistics file was used during training by the "
                      "TrainRegression, it is mandatory to use the same "
                      "statistics file for prediction. If an input mask is "
                      "used, its size must match the input image size.");
    SetDocAuthors("OTB-Team");
    SetDocSeeAlso("TrainRegression, ComputeImagesStatistics");

    AddDocTag(Tags::Learning);

    AddParameter(ParameterType_InputImage, "in",  "Input Image");
    SetParameterDescription( "in", "The input image to predict.");

    // TODO : use CSV input/output ?

    AddParameter(ParameterType_InputImage,  "mask",   "Input Mask");
    SetParameterDescription( "mask", "The mask allow restricting "
      "classification of the input image to the area where mask pixel values "
      "are greater than 0.");
    MandatoryOff("mask");

    AddParameter(ParameterType_InputFilename, "model", "Model file");
    SetParameterDescription("model", "A regression model file (produced by "
      "TrainRegression application).");

    AddParameter(ParameterType_InputFilename, "imstat", "Statistics file");
    SetParameterDescription("imstat", "A XML file containing mean and standard"
      " deviation to center and reduce samples before prediction "
      "(produced by ComputeImagesStatistics application). If this file contains"
      "one more band than the sample size, the last stat of last band will be"
      "applied to expand the output predicted value");
    MandatoryOff("imstat");

    AddParameter(ParameterType_OutputImage, "out",  "Output Image");
    SetParameterDescription( "out", "Output image containing predicted values");

    AddRAMParameter();

   // Doc example parameter settings
    SetDocExampleParameterValue("in", "QB_1_ortho.tif");
    SetDocExampleParameterValue("imstat", "EstimateImageStatisticsQB1.xml");
    SetDocExampleParameterValue("model", "clsvmModelQB1.svm");
    SetDocExampleParameterValue("out", "clLabeledImageQB1.tif");

    SetOfficialDocLink();
  }

  void DoUpdateParameters() override
  {
    // Nothing to do here : all parameters are independent
  }

  void DoExecute() override
  {
    // Load input image
    FloatVectorImageType::Pointer inImage = GetParameterImage("in");
    inImage->UpdateOutputInformation();
    unsigned int nbFeatures = inImage->GetNumberOfComponentsPerPixel();

    // Load svm model
    otbAppLogINFO("Loading model");
    m_Model = MachineLearningModelFactoryType::CreateMachineLearningModel(GetParameterString("model"),
                                                                          MachineLearningModelFactoryType::ReadMode);

    if (m_Model.IsNull())
      {
      otbAppLogFATAL(<< "Error when loading model " << GetParameterString("model") << " : unsupported model type");
      }

    m_Model->Load(GetParameterString("model"));
    m_Model->SetRegressionMode(true);
    otbAppLogINFO("Model loaded");

    // Classify
    m_ClassificationFilter = ClassificationFilterType::New();
    m_ClassificationFilter->SetModel(m_Model);
    
    FloatImageType::Pointer outputImage = m_ClassificationFilter->GetOutput();

    // Normalize input image if asked
    if(IsParameterEnabled("imstat")  )
      {
      otbAppLogINFO("Input image normalization activated.");
      // Normalize input image (optional)
      StatisticsReader::Pointer  statisticsReader = StatisticsReader::New();
      MeasurementType  meanMeasurementVector;
      MeasurementType  stddevMeasurementVector;
      m_Rescaler = RescalerType::New();
      // Load input image statistics
      statisticsReader->SetFileName(GetParameterString("imstat"));
      meanMeasurementVector   = statisticsReader->GetStatisticVectorByName("mean");
      stddevMeasurementVector = statisticsReader->GetStatisticVectorByName("stddev");
      otbAppLogINFO( "mean used: " << meanMeasurementVector );
      otbAppLogINFO( "standard deviation used: " << stddevMeasurementVector );
      if (meanMeasurementVector.Size() == nbFeatures + 1)
        {
        double outMean = meanMeasurementVector[nbFeatures];
        double outStdDev = stddevMeasurementVector[nbFeatures];
        meanMeasurementVector.SetSize(nbFeatures,false);
        stddevMeasurementVector.SetSize(nbFeatures,false);
        m_OutRescaler = OutputRescalerType::New();
        m_OutRescaler->SetInput(m_ClassificationFilter->GetOutput());
        m_OutRescaler->GetFunctor().SetA(outStdDev);
        m_OutRescaler->GetFunctor().SetB(outMean);
        outputImage = m_OutRescaler->GetOutput();
        }
      else if (meanMeasurementVector.Size() != nbFeatures)
        {
        otbAppLogFATAL("Wrong number of components in statistics file : "<<meanMeasurementVector.Size());
        }
        
      // Rescale vector image
      m_Rescaler->SetScale(stddevMeasurementVector);
      m_Rescaler->SetShift(meanMeasurementVector);
      m_Rescaler->SetInput(inImage);

      m_ClassificationFilter->SetInput(m_Rescaler->GetOutput());
      }
    else
      {
      otbAppLogINFO("Input image normalization deactivated.");
      m_ClassificationFilter->SetInput(inImage);
      }


    if(IsParameterEnabled("mask"))
      {
      otbAppLogINFO("Using input mask");
      // Load mask image and cast into LabeledImageType
      MaskImageType::Pointer inMask = GetParameterUInt8Image("mask");

      m_ClassificationFilter->SetInputMask(inMask);
      }

    SetParameterOutputImage<FloatImageType>("out", outputImage);

  }

  ClassificationFilterType::Pointer m_ClassificationFilter;
  ModelPointerType m_Model;
  RescalerType::Pointer m_Rescaler;
  OutputRescalerType::Pointer m_OutRescaler;

};


}
}

OTB_APPLICATION_EXPORT(otb::Wrapper::PredictRegression)